迁移学习诊断

该系列研究探讨了在不同工作条件下的轴承故障诊断中,如何利用深度学习的迁移学习方法。第一篇论文提出了一种新的深转换学习方法,第二篇介绍了多源域适应故障诊断技术,第三篇则利用动态联合分布对齐网络处理变量工作条件下的诊断问题。这些方法旨在克服源域和目标域之间的差异,有效提高诊断准确性和泛化能力。
摘要由CSDN通过智能技术生成
  1. J. Zhu, N. Chen and C. Shen, “A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions,” in IEEE Sensors Journal, vol. 20, no. 15, pp. 8394-8402, 1 Aug.1, 2020, doi: 10.1109/JSEN.2019.2936932

https://ieeexplore.ieee.org/document/8809786

  1. J. Zhu, N. Chen and C. Shen, “A New Multiple Source Domain Adaptation Fault Diagnosis Method Between Different Rotating Machines,” in IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4788-4797, July 2021, doi: 10.1109/TII.2020.3021406.

https://ieeexplore.ieee.org/document/9186370

  1. C. Shen, X. Wang, D. Wang, Y. Li, J. Zhu and M. Gong, “Dynamic Joint Distribution Alignment Network for Bearing Fault Diagnosis Under Variable Working Conditions,” in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-13, 2021, Art no. 3510813, doi: 10.1109/TIM.2021.3055786.

https://ieeexplore.ieee.org/document/9343309

Zhu Jun
Zhao Zhibin

什么适合迁移?

在一些学习任务中有一些特征是个体所特有的,这些特征不可以迁移。而有些特征是在所有的个体中具有贡献的,这些可以进行迁移。

有些时候如果迁移的不合适则会导致负迁移,例如当源域和目标域的任务毫不相关时有可能会导致负迁移。

迁移学习的分类

根据 Sinno Jialin Pan 和 Qiang Yang 在 TKDE 2010 上的文章,可将迁移学习算法,根据所要迁移的知识表示形式(即 “what to transfer”),分为四大类:

基于实例的迁移学习(instance-based transfer learning):源领域(source domain)中的数据(data)的某一部分可以通过reweighting的方法重用,用于target domain的学习。

基于特征表示的迁移学习(feature-representation transfer learning):通过source domain学习一个好的(good)的特征表示,把知识通过特征的形式进行编码,并从suorce domain传递到target domain,提升target domain任务效果。

基于参数的迁移学习(parameter-transfer learning):target domain和source domian的任务之间共享相同的模型参数(model parameters)或者是服从相同的先验分布(prior distribution)。

基于关系知识迁移学习(relational-knowledge transfer learning):相关领域之间的知识迁移,假设source domain和target domain中,数据(data)之间联系关系是相同的。

前三类迁移学习方式都要求数据(data)独立同分布假设。同时,四类迁移学习方式都要求选择的sourc doma与target domain相关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值