迁移学习诊断

该系列研究探讨了在不同工作条件下的轴承故障诊断中,如何利用深度学习的迁移学习方法。第一篇论文提出了一种新的深转换学习方法,第二篇介绍了多源域适应故障诊断技术,第三篇则利用动态联合分布对齐网络处理变量工作条件下的诊断问题。这些方法旨在克服源域和目标域之间的差异,有效提高诊断准确性和泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. J. Zhu, N. Chen and C. Shen, “A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions,” in IEEE Sensors Journal, vol. 20, no. 15, pp. 8394-8402, 1 Aug.1, 2020, doi: 10.1109/JSEN.2019.2936932

https://ieeexplore.ieee.org/document/8809786

  1. J. Zhu, N. Chen and C. Shen, “A New Multiple Source Domain Adaptation Fault Diagnosis Method Between Different Rotating Machines,” in IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4788-4797, July 2021, doi: 10.1109/TII.2020.3021406.

https://ieeexplore.ieee.org/document/9186370

  1. C. Shen, X. Wang, D. Wang, Y. Li, J. Zhu and M. Gong, “Dynamic Joint Distribution Alignment Network for Bearing Fault Diagnosis Under Variable Working Conditions,” in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-13, 2021, Art no. 3510813, doi: 10.1109/TIM.2021.3055786.

https://ieeexplore.ieee.org/document/9343309

Zhu Jun
Zhao Zhibin

什么适合迁移?

在一些学习任务中有一些特征是个体所特有的,这些特征不可以迁移。而有些特征是在所有的个体中具有贡献的,这些可以进行迁移。

有些时候如果迁移的不合适则会导致负迁移,例如当源域和目标域的任务毫不相关时有可能会导致负迁移。

迁移学习的分类

根据 Sinno Jialin Pan 和 Qiang Yang 在 TKDE 2010 上的文章,可将迁移学习算法,根据所要迁移的知识表示形式(即 “what to transfer”),分为四大类:

基于实例的迁移学习(instance-based transfer learning):源领域(source domain)中的数据(data)的某一部分可以通过reweighting的方法重用,用于target domain的学习。

基于特征表示的迁移学习(feature-representation transfer learning):通过source domain学习一个好的(good)的特征表示,把知识通过特征的形式进行编码,并从suorce domain传递到target domain,提升target domain任务效果。

基于参数的迁移学习(parameter-transfer learning):target domain和source domian的任务之间共享相同的模型参数(model parameters)或者是服从相同的先验分布(prior distribution)。

基于关系知识迁移学习(relational-knowledge transfer learning):相关领域之间的知识迁移,假设source domain和target domain中,数据(data)之间联系关系是相同的。

前三类迁移学习方式都要求数据(data)独立同分布假设。同时,四类迁移学习方式都要求选择的sourc doma与target domain相关。

### 迁移学习在故障诊断中的应用及实现方法 迁移学习是一种通过利用源域的知识来提升目标域性能的学习技术。它特别适用于当目标域缺乏充足标注数据的情况,这正是许多工业场景中常见的挑战之一[^2]。 #### 1. 故障诊断中的迁移学习背景 在工业领域,尤其是轴承和其他旋转机械设备的故障诊断中,通常需要大量的标注数据来训练有效的机器学习模型。然而,在实际工程环境中获取这些数据既昂贵又耗时。为了克服这一问题,迁移学习提供了一种解决方案——即通过从其他相关设备或实验环境中学到的知识迁移到当前的目标设备上,从而减少对新数据的需求。 #### 2. 基于特征的迁移学习方法 一种广泛应用于轴承故障诊断的技术是基于特征的迁移学习方法。这种方法的核心思想是从源域提取有用的特征表示,并将其适配至目标域的任务需求之中。例如,可以先在一个具有充分标注数据的实验室环境下训练一个通用的特征提取器,再将此特征提取器调整后用于现场采集的小规模数据集之上[^1]。 #### 3. 使用深度学习框架下的迁移学习实例 近年来,随着深度学习的发展,卷积神经网络 (CNNs) 和其变体被成功引入到了迁移学习当中。具体来说,有研究者尝试把一维时间序列形式的振动信号转化为二维图像(如尺度图或者时频谱图),这样就可以充分利用已经预先训练好的 CNN 架构来进行后续分析工作了[^3]。这种做法不仅简化了手工设计特征的过程,而且还能提高最终分类效果。 另外值得注意的是,尽管现代大型神经网络往往依赖海量数据才能达到最佳表现,但对于某些特定应用场景比如小样本情况,则仍然存在一些专门针对此类条件优化过的轻量化版本可供选择;同时适当加入批量归一化(BN)层等操作也有助于改善因不同分布间差异带来的负面影响[^4]。 #### 4. 实现流程概述 以下是采用上述提到的方式完成一次典型项目的大致步骤描述: - **数据准备阶段**: 将原始的一维传感器读数映射成适合输入给定视觉类DNN结构的形式; - **基础模型构建与初始化**: 利用公开可用资源加载预训练权重作为初始参数值设定依据; - **微调过程控制策略制定**: 针对待解决问题特点合理设置哪些部分允许更新以及相应速率大小等因素影响程度评估机制建立起来; - **测试验证环节安排规划**: 设计科学合理的评价指标体系用来衡量改进后的整体效能水平高低状况如何等等事项都需要提前考虑周全才行哦! --- ### 示例代码展示 下面给出一段简单的Python脚本演示如何加载ImageNet上的ResNet50模型并对自定义图片执行预测任务的部分逻辑片段供参考之用: ```python import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions from tensorflow.keras.preprocessing import image import numpy as np def load_and_preprocess_image(img_path): img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x model = ResNet50(weights='imagenet') img_path = 'path/to/your/image.jpg' preprocessed_image = load_and_preprocess_image(img_path) preds = model.predict(preprocessed_image) print('Predicted:', decode_predictions(preds, top=3)[0]) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值