- J. Zhu, N. Chen and C. Shen, “A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions,” in IEEE Sensors Journal, vol. 20, no. 15, pp. 8394-8402, 1 Aug.1, 2020, doi: 10.1109/JSEN.2019.2936932
https://ieeexplore.ieee.org/document/8809786
- J. Zhu, N. Chen and C. Shen, “A New Multiple Source Domain Adaptation Fault Diagnosis Method Between Different Rotating Machines,” in IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4788-4797, July 2021, doi: 10.1109/TII.2020.3021406.
https://ieeexplore.ieee.org/document/9186370
- C. Shen, X. Wang, D. Wang, Y. Li, J. Zhu and M. Gong, “Dynamic Joint Distribution Alignment Network for Bearing Fault Diagnosis Under Variable Working Conditions,” in IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-13, 2021, Art no. 3510813, doi: 10.1109/TIM.2021.3055786.
https://ieeexplore.ieee.org/document/9343309
什么适合迁移?
在一些学习任务中有一些特征是个体所特有的,这些特征不可以迁移。而有些特征是在所有的个体中具有贡献的,这些可以进行迁移。
有些时候如果迁移的不合适则会导致负迁移,例如当源域和目标域的任务毫不相关时有可能会导致负迁移。
迁移学习的分类
根据 Sinno Jialin Pan 和 Qiang Yang 在 TKDE 2010 上的文章,可将迁移学习算法,根据所要迁移的知识表示形式(即 “what to transfer”),分为四大类:
基于实例的迁移学习(instance-based transfer learning):源领域(source domain)中的数据(data)的某一部分可以通过reweighting的方法重用,用于target domain的学习。
基于特征表示的迁移学习(feature-representation transfer learning):通过source domain学习一个好的(good)的特征表示,把知识通过特征的形式进行编码,并从suorce domain传递到target domain,提升target domain任务效果。
基于参数的迁移学习(parameter-transfer learning):target domain和source domian的任务之间共享相同的模型参数(model parameters)或者是服从相同的先验分布(prior distribution)。
基于关系知识迁移学习(relational-knowledge transfer learning):相关领域之间的知识迁移,假设source domain和target domain中,数据(data)之间联系关系是相同的。
前三类迁移学习方式都要求数据(data)独立同分布假设。同时,四类迁移学习方式都要求选择的sourc doma与target domain相关。