备注:所有内容均原创,如需要代码可以联系Q286820790或者邮箱286820790@qq.com
目录
备注:所有内容均原创,如需要代码可以联系Q286820790或者邮箱286820790@qq.com
2.高斯白噪声(Gaussian White Noise Model)
2.1高斯白噪声(Gaussian White Noise):噪声幅度服从高斯分布即正态分布,功率谱密度是一个常数值也就是(是功率谱密度,也是方差的2倍)。
1.序言
通俗来说,非高斯噪声(Non-Gaussian Noise),也叫脉冲噪声(Impulsive Noise)就是其概率密度函数(PDF)不满足高斯分布(正态分布)的随机过程。
例如机器学习中常用到的高斯混合模型(GMM),水声领域中经常用的α稳定分布模型(α-stable)以及电力线(PLC)以及大气噪声(Atmosphere Noise)中经常使用的Middleton Class A(MCA)模型以及Middleton Class B(MCB)模型。
2.高斯白噪声(Gaussian White Noise Model)
2.1高斯白噪声(Gaussian White Noise):噪声幅度服从高斯分布即正态分布,功率谱密度是一个常数值也就是
(
是功率谱密度,也是方差的2倍)。
2.2高斯噪声一维概率密度函数(PDF)
其中,为均值,
为方差。

MATLAB代码如下
clc;clear all;close all
%% 高斯白噪声PDF
%% 方法一:MATLAB自带的norpdf函数
x=-5:.2:5;
mu=0 ;%均值
sigma=1; %方差
PDF_G=normpdf(x,mu,sigma);
plot(x,PDF_G,"r-*")
legend("高斯PDF 均值0 方差1")
xlabel('x');
ylabel("Amplitude")
axis([-5 5 0 0.5])
set(gca,'FontSize',16);
2.3高斯噪声随机数

%% 方法一:MATLAB自带的randn函数
N=1000; %1000个噪声点
mu=0 ;%均值
sigma=1; %方差
Rand_G=mu+sigma*randn(1,N);
plot(Rand_G)
legend("高斯随机数 均值0 方差1")
xlabel('N');
ylabel("Amplitude")
set(gca,'FontSize',16);
3.非高斯噪声
3.1非高斯噪声特点
(说白了就是相比了高斯噪声,它的特点如下)
- 随机性:(与高斯噪声相同特性,这个就不解释了,没有随机性的还能叫噪声?)
- 脉冲性:具有大的脉冲幅值,且持续时间短,振幅大
- 重尾(拖尾)特性(heavy tailed):与高斯PDF相比,脉冲噪声具有严重的拖尾效应。
3.2常用的非高斯噪声模型
3.2.1GMM模型
高斯混合模型又叫GMM模型,经常在机器学习中应用其概率密度函数PDF为
他表示为两个具有不同加权系数以及
的加权和(这里我们只考虑两项),第一项表示为高斯项,
为均值,
为方差;第二项表示为脉冲项,
为均值,
为方差。

可以看出,GMM模型的PDF相比于高斯PDF具有拖尾的性质。
3.2.2 α稳定分布模型
α-稳定分布模型又称为Levy噪声模型,是Levy根据广义中心极限定理(The Generalized Central Limit Theorem)得到的,该分布模型不像GMM模型以及高斯模型,具有封闭的概率密度解析式,因此一般采用特征函数
其中
α稳定分布由4个参数决定。表示脉冲指数,
为对称参数,
为散度相当于高斯噪声中的方差,
为位置参数

可以看出α稳定分布的PDF具有严重的拖尾性质,且脉冲指数α越小,拖尾性质越严重。

3.2.3 MiddletonClass A模型
Middle Class A模型是由学者Dr. Middleton 提出的具有明确物理意义的三大模型之一(区别于α稳定分布,它属于经验模型)。包括Middleton Class A,B,C模型。
Middleton Class A噪声的PDF如下,他表示具有无穷项不同加权系数的高斯加权和,一共有项,整体
项又服从泊松分布,因此它并不是简单的高斯项加权和。
它由三个参数决定,其中代表脉冲指数,
表示高斯系数比,高斯噪声平均功率比上脉冲噪声平均功率,
为每项的方差,
,
表示阶数。

可以看出,Middleton Class A的PDF也具有拖尾性质,且脉冲指数A越小拖尾越严重,随着脉冲指数A的增加,Class A的PDF越来越接近高斯的PDF,这也体现了Class A的优越性:可以从非高斯平滑的过渡到高斯模型。
