由于矩阵理论课程讲解矩阵的任务,特此选择了灰度共生矩阵作为汇报内容,通过对网络中各种知识的阅读总结,最后给出了一份自己的知识框架供大家参考:
1.矩阵的应用背景:
遥感图像分类处理可以帮助我们充分掌握地物情况,从而提高遥感信息的实用价值。但因遥感图像所涵盖的内容非常多,使得其图像的分类处理具有非常高的难度。
灰度共生矩阵是当前学界公认的具有较强鲁棒特性和适应特性的图像识别技术,能够有效实现对图像的分类和检索,从而最大程度上实现对遥感图像分类处理精度的提升。
2.矩阵定义:
灰度共生矩阵(GLCM)的统计方法是20世纪70年代初由R.Haralick等人提出的,它是在假定图像中各像素间的空间分布关系包含了图像纹理信息的前提下,提出的具有广泛性的纹理分析方法。
灰度共生矩阵通过计算图像中有一定距离和一 定方向(距离和方向可以设定)的两点灰度之间的相关性,来反映图像在方向、间隔、变化幅度及快慢上的综合信息。
从灰度为i的像素点出发,距离为(dx,dy)的另一个像素点的灰度为j的概率;
数学表达式:
式中,#表示集合;d是用像素数量表示的相对距离;𝜃一般考虑四个方向;(x,y)
为图像中的像素坐标,i,j=0,1,2,…,L-1;L为图像灰度级的数目。
简单来说:灰度图像中某种
灰度共生矩阵在遥感影像分类中的应用知识介绍
最新推荐文章于 2024-11-04 15:22:14 发布