求argmin||x - Dα||2 最小,本就是让Dα和x无限的逼近。当我们找到α的时候,就可以用Dα来表示x,即为将x做了矩阵分解,也就是字典学习dictionary leanring。
用NLP的word2vec来解释字典学习。D就是单词的字典,α就是检索方式。 I love U 3个单词不共线。因为共线的向量,没有更多信息。如果不共线,就想到了PCA和SVD。所以字典学习和它们有些关系。
字典学习就是获得一个优秀的字典D,D每一行每一列由特殊的意思,和一个优秀的检索方法α*。
α只是对于一个数据的,如果是对于数据集X(x1, x2, …, xn),那么α就从vector变成了matrix。R=[α1, α2, …, αn] 属于 R k*n。把这个α组成的矩阵称为R。
Frobenius 弗罗贝尼乌斯 范数
trace指的是矩阵对角线的加和,称为矩阵的迹。
不能同时对D和R同时求偏导。只能先求一个,然后固定,再求另一个。
MUR:乘法更新法则
注意老师这里用的推导HWV就是DRX
每次计算D和R可能都不同。但是他们D于R相乘,都可以得到X。