5328笔记 Advanced ML Chapter5-Dictionary Learning and Non-negative Matrix Factorisation

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
求argmin||x - Dα||2 最小,本就是让Dα和x无限的逼近。当我们找到α的时候,就可以用Dα来表示x,即为将x做了矩阵分解,也就是字典学习dictionary leanring。
在这里插入图片描述
用NLP的word2vec来解释字典学习。D就是单词的字典,α就是检索方式。 I love U 3个单词不共线。因为共线的向量,没有更多信息。如果不共线,就想到了PCA和SVD。所以字典学习和它们有些关系。

字典学习就是获得一个优秀的字典D,D每一行每一列由特殊的意思,和一个优秀的检索方法α*。

α只是对于一个数据的,如果是对于数据集X(x1, x2, …, xn),那么α就从vector变成了matrix。R=[α1, α2, …, αn] 属于 R k*n。把这个α组成的矩阵称为R。
在这里插入图片描述
在这里插入图片描述
Frobenius 弗罗贝尼乌斯 范数
在这里插入图片描述
trace指的是矩阵对角线的加和,称为矩阵的迹。
在这里插入图片描述
不能同时对D和R同时求偏导。只能先求一个,然后固定,再求另一个。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
MUR:乘法更新法则
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
注意老师这里用的推导HWV就是DRX
每次计算D和R可能都不同。但是他们D于R相乘,都可以得到X。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值