为什么选择Lora用于模型训练?

Lora是一种通过添加数据处理层而非修改原模型参数来进行模型训练的方法,减少了文件大小和显存需求。它优化了插入层的参数,使得模型更轻量,仅需6GB显存即可训练,并在WebUI中支持便捷的多模型效果叠加。
摘要由CSDN通过智能技术生成

为什么选择Lora用于模型训练?

Lora采用的方式是向原有的模型中插入新的数据处理层,这样就避免了去修改原有的模型参数,从而避免将整个模型进行拷贝的情况,同时其也优化了插入层的参数量,最终实现了一种很轻量化的模型调校方法。

直接以矩阵相乘的形式存储,最终文件就会小很多。

一般lora都在144M,而一般的DB大模型至少都是近2G起,节省了大量的存储空间。

Lora训练时需要的显存也少了,显卡的显存达到6g即可开启训练,硬件门槛更加亲民。

Lora可以非常方便的在webui界面通过调用和不同权重,实现多种模型效果的叠加,相比DB大模型操作更加便捷,效果更加显著。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值