MSK的CPM调制和I-Q调制

最小频移键控 Minimum shift keying(MSK)

最近需要学习MSK,在论坛上看了很多篇文章仍然是云里雾里,倒腾了好多天终于稍微弄清楚了点MSK的调制部分,所以写了这篇浅入浅出的学习笔记。主要参考的是Marvin K.Simon的《Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communications》中前两章部分;欢迎大家指正。

一、 MSK的CPM调制

1.连续相位调制CPM与MSK的关系

Continuous phase modulation(CPM)通过改变载波的相位来反应原信号信息,按调制频率脉冲是一个比特时间还是更长分为全响应和部分响应。全响应中,调制指数h=0.5,任意频率脉冲的为广义MSK。若频率脉冲为一个矩形频率脉冲,则为MSK,若是升余弦,则为sinusodial frequency-shift-keying (SFCK)。而调制指数任意但频率脉冲为矩形的是continuous phase frequency pulse (CPFSK),此时若调制指数为0.5,则又成为了MSK。部分响应中,以Gaussian minimum-shift-keying(GMSK)最为常见,事实上,在进行MSK调制前将矩形信号脉冲先通过一个高斯型的低通滤波器即可得到GMSK。整个关系在全响应那里有点绕,尝试用markdown的mermaid流程图阐述一下我理解的关系:

Partial response
with rectangular frequency pulse but arbitrary h
with h=0.5 but arbitrary frequency pulse shape
a rectangular frequency pulse shape
a sinusodial frequency pulse shape
h=0.5
Guassian impulse response
CPM
Full response
Partial response
CPFSK
genralized MSK
MSK
SFSK
GMSK

2.Continuous Phase Frequency Modulation Representation (CPFM)

下面进行MSK的CPM调制的数学推导:一个具有连续包络波形的二进制单模CPM信号通式为: s ( t ) = 2 E b T b c o s ( 2 π f c t + ϕ ( t , α ) + ϕ 0 ) , n T b ≤ t ≤ ( n + 1 ) T b ( 1 ) s(t) = \sqrt{\frac{2E_b}{T_b}} cos(2\pi f_ct+\phi(t,\alpha)+\phi_0), \qquad nT_b\leq t \leq (n+1)T_b \quad(1) s(t)=Tb2Eb cos(2πfct+ϕ(t,α)+ϕ0),nTbt(n+1)Tb1 其中。Eb和Tb分别是一个比特的能量和持续时间,fc是载波频率, ϕ 0 \phi_0 ϕ0是初始相位,可以取0.而 ϕ ( t , α ) \phi(t,\alpha) ϕ(t,α)即是相位调制过程(瞬时相位偏移随m(t)作线性变化),可表示为: ϕ ( t , α ) = 2 π ∑ i ≤ n α i h q ( t − i T b ) ( 2 ) \phi(t,\alpha)=2\pi\sum_{i\leq n} \alpha_ihq(t-iT_b)\qquad (2) ϕ(t,α)=2πinαihq(tiTb)(2) α \alpha α是独立同分布(i.i.d)的二进制序列,相等概率地取 ± 1 \pm 1 ±1,h为调制指数,q(t)为归一化平滑相应(the normalized phase-smoothing response),也就是说,q(t)决定了基本相位(the underlying phase) 2 π α i h 2\pi\alpha_ih 2παih是如何变化的;同时,我们定义q(t)的导数g(t)为第零时刻的信号间隔内产生的瞬时频率脉冲: g ( t ) = d q ( t ) d t ( 3 ) g(t)=\frac{dq(t)}{dt}\qquad (3) g(t)=dtdq(t)(3) 因此,q(t)可以由g(t)积分得到: q ( t ) = ∫ − ∞ t g ( τ ) d τ ( 4 ) q(t)=\int_{-\infty}^t g(\tau)d\tau \qquad (4) q(t)=tg(τ)dτ(4) 由于对于MSK,g(t)是一个矩形脉冲, T b T_b Tb内积分面积为 1 2 \frac12 21 ,且g(t)仅在比特时间间隔内不为0 (g(t) is nonzero only over the bit interval) ,因此q(t)其实是满足下面这个式子的: q ( t ) = { 0 , t ≤ 0 1 2 , t ≥ T b ( 5 ) q(t) =\begin{cases}0, & t \leq 0 \\\frac12, & t\geq T_b\end{cases} \qquad(5) q(t)={0,21,t0tTb(5) 从(5)式可以看出,第i个数据 α i \alpha_i αi对在 T b T_b Tb时间后对整个相位有 π α i h \pi\alpha_ih παih的贡献,这种被修正后的相位变化会持续到之后的所有时间。由于这种相位平滑响应上的重叠,每个信号间隔内的总想为是当前数据和之前所有数据的函数,因此我们说MSK的CPM调制是具有记忆性的,最佳的解调方式是最大似然序列分析(Maximum-likelihood sequence estiymator) 对于g(t),可以由下式来描述: g ( t ) = { 1 2 T b , 0 ≤ t ≤ T b 0 , o t h e r w i s e ( 6 ) g(t) =\begin{cases}\frac{1}{2T_b}, & 0\leq t \leq T_b \\0, & otherwise\end{cases} \qquad(6) g(t)={2Tb1,0,0tTbotherwise(6) 那么由(4)式定义得到的相位脉冲即为: q ( t ) = { t 2 T b , 0 ≤ t ≤ T b 1 2 , t ≥ T b ( 7 ) q(t) =\begin{cases}\frac{t}{2T_b}, & 0\leq t \leq T_b \\\frac12, & t \geq T_b\end{cases} \qquad(7) q(t)={2Tbt,21,0tTbtTb(7) g(t)和q(t)的函数图像如下表示,可以看出q(t)其实是无限延伸的。
MSK的g(t)和q(t)
现在,结合 h=0.5 和g(t)表达式,我们可以得到MSK的CPM调制表达式: s M S K ( t ) = 2 E b T b c o s ( 2 π f c t + π 2 T b ∑ i ≤ n α ( t − i T b ) ) , n T b ≤ t ≤ ( n + 1 T b ) ( 8 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}cos(2\pi f_ct+\frac{\pi}{2T_b}\sum_{i\leq n}\alpha(t-iT_b) ),\quad nT_b\leq t \leq (n+1T_b) \qquad(8) sMSK(t)=Tb2Eb cos(2πfct+2Tbπinα(tiTb)),nTbt(n+1Tb)(8) 为了更直观地理解MSK的相位变化,给出其相位树:
MSK相位树

可以看出,MSK随时间的相位变化是线性的,其相位树上的路径是斜率为 ± π 2 T b \pm \frac{\pi}{2}T_b ±2πTb的直线。每个比特时间的相位变化根据 α i \alpha_i αi的极性来决定是 π 2 \frac{\pi}{2} 2π还是 − π 2 -\frac{\pi}{2} 2π。且在模2 π \pi π的体系下,其偶数时刻的相位是0或 π \pi π,奇数时刻的相位是 π 2 \frac{\pi}{2} 2π 3 π 2 \frac{3\pi}{2} 23π.

二、MSK的正交表示

由于记忆性,CPM需要采用如最大似然序列分析(MLSE)的解调方式,而像MSK这样调制指数h=0.5的全响应调制实际上可以进行无记忆性的I-Q接收。因为MSK调制的发射可以用类似于OQPSK的I-Q形式执行。

1.Equivalent I-Q Representation of MSK

下面进行MSK正交表达式的数学推导: 改写(8)式里第n个信号间隔里MSK信号的附加相移为: ϕ ( t , α ) = π 2 T b ∑ i ≤ n α i ( t − i T b ) = α n π 2 T b ( t − n T b ) + π 2 ∑ i ≤ n − 1 α i = α n π 2 T b t + x n , \phi(t,\alpha)=\frac{\pi}{2T_b}\sum_{i\leq n} \alpha_i(t-iT_b)=\alpha_n\frac{\pi}{2T_b}(t-nT_b)+\frac\pi2 \sum_{i\leq n-1} \alpha_i=\alpha_n\frac{\pi}{2T_b}t+x_n, ϕ(t,α)=2Tbπinαi(tiTb)=αn2Tbπ(tnTb)+2πin1αi=αn2Tbπt+xn, n T b ≤ t ≤ ( n + 1 ) T b ( 11 ) nT_b\leq t\leq (n+1)Tb\qquad\qquad(11) nTbt(n+1)Tb(11)其中 π 2 ∑ i ≤ n − 1 α i \frac\pi2 \sum_{i\leq n-1} \alpha_i 2πin1αi是第n个时间间隔开始时的累积相位。 x n x_n xn是使 t = n T b t=nT_b t=nTb t = ( n + 1 ) T b t=(n+1)T_b t=(n+1)Tb处码元相位连续的相位常数,同时其也是模 2 π 2\pi 2π的附加相位图路径上的y轴截距。前一个时间间隔的附加相移为: ϕ ( t , α ) = α n π 2 T b ( t − ( n − 1 ) T b ) + π 2 ∑ i ≤ n − 2 α i = α n − 1 π 2 T b t + x n − 1 , \phi(t,\alpha)=\alpha_n\frac{\pi}{2T_b}(t-(n-1)T_b)+\frac\pi2 \sum_{i\leq n-2} \alpha_i=\alpha_{n-1}\frac{\pi}{2T_b}t+x_{n-1}, ϕ(t,α)=αn2Tbπ(t(n1)Tb)+2πin2αi=αn12Tbπt+xn1, ( n − 1 ) T b ≤ t ≤ n T b ( 12 ) (n-1)T_b\leq t\leq nTb\qquad\qquad(12) (n1)TbtnTb(12)对比(11)式和(12)式,为使相位在 t = n T b t = n T_b t=nTb处连续,要求: α n π 2 T b ( n T b ) + x n = α n − 1 π 2 T b ( n T b ) + x n − 1 ( 13 ) \alpha_n\frac{\pi}{2T_b}(nT_b)+x_n=\alpha_{n-1}\frac{\pi}{2T_b}(nT_b)+x_{n-1}\qquad(13) αn2Tbπ(nTb)+xn=αn12Tbπ(nTb)+xn1(13) x n = x n − 1 + π n 2 ( α n − 1 − α n ) ( 14 ) x_n=x_{n-1}+\frac{\pi n}{2}(\alpha_{n-1}-\alpha_n)\qquad (14) xn=xn1+2πn(αn1αn)(14)由该递归式可知在给定初始条件 x 0 x_0 x0的情况下,任何时间间隔内的 x n x_n xn都可以被确定。注意到 ( α n − 1 − α n ) (\alpha_{n-1}-\alpha_n) (αn1αn)是一个分别以概率1/2,1/4,1/4取值于0,+1,-1的三元随机变量。因此,由(14)可知,当 α n − 1 = α n \alpha_{n-1}=\alpha_n αn1=αn时, x n = x n − 1 x_n=x_{n-1} xn=xn1,当 α n − 1 ≠ α n \alpha_{n-1}\neq\alpha_n αn1̸=αn时, x n = x n − 1 ± π n x_n=x_{n-1}\pm\pi n xn=xn1±πn。如果取= 0 ,可以发现在模 2 π 2\pi 2π时取值0或 π \pi π。由(8)和(11),通过三角公式展开,可得: s M S K ( t ) = 2 E b T b ( c o s ϕ ( t , α ) c o s 2 π f c t − s i n ϕ ( t , α ) s i n 2 π f c t ) , n T b ≤ t ≤ ( n + 1 T b ) ) ( 15 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}(cos\phi(t,\alpha)cos2\pi f_ct-sin \phi(t,\alpha)sin2\pi f_ct),\quad nT_b\leq t \leq (n+1T_b) )\qquad(15) sMSK(t)=Tb2Eb cosϕ(t,α)cos2πfctsinϕ(t,α)sin2πfct),nTbt(n+1Tb)(15) 其中 c o s ϕ ( t , α ) = c o s ( α π 2 T b t + x n ) = ± c o s ( α π 2 T b t ) = ± c o s π 2 T b t = a n c o s π 2 T b t , 令 a n = c o s x n = ± 1 cos\phi(t,\alpha)=cos(\alpha\frac{\pi}{2T_b}t+x_n)=\pm cos(\alpha\frac{\pi}{2T_b}t)=\pm cos\frac{\pi}{2T_b}t=a_ncos\frac{\pi}{2T_b}t,令a_n=cosx_n=\pm1 cosϕ(t,α)=cos(α2Tbπt+xn)=±cos(α2Tbπt)=±cos2Tbπt=ancos2Tbπt,an=cosxn=±1 s i n ϕ ( t , α ) = s i n ( α π 2 T b t + x n ) = ± s i n ( α π 2 T b t ) = ± α s i n π 2 T b t = b n s i n π 2 T b t , 令 b n = α n c o s x n = ± 1 sin\phi(t,\alpha)=sin(\alpha\frac{\pi}{2T_b}t+x_n)=\pm sin(\alpha\frac{\pi}{2T_b}t)=\pm \alpha sin\frac{\pi}{2T_b}t=b_nsin\frac{\pi}{2T_b}t,令b_n=\alpha_n cosx_n=\pm1 sinϕ(t,α)=sin(α2Tbπt+xn)=±sin(α2Tbπt)=±αsin2Tbπt=bnsin2Tbπt,bn=αncosxn=±1 ( 16 ) \qquad\qquad\qquad\qquad(16) (16)最后用(16)代替(15)可以得到MSK的I-Q形式: s M S K ( t ) = 2 E b T b ( a n C ( t ) c o s 2 π f c t − b n S ( t ) s i n 2 π f c t ) , n T b ≤ t ≤ ( n + 1 ) T b ( 17 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}(a_nC(t)cos2\pi f_ct-b_nS(t)sin2\pi f_ct),\quad nT_b\leq t \leq (n+1)T_b \qquad(17) sMSK(t)=Tb2Eb (anC(t)cos2πfctbnS(t)sin2πfct),nTbt(n+1)Tb(17) 其中 C ( t ) = c o s π t 2 T b C(t)=cos\frac{\pi t}{2T_b} C(t)=cos2Tbπt S ( t ) = s i n π t 2 T b S(t)=sin\frac{\pi t}{2T_b} S(t)=sin2Tbπt ( 18 ) \qquad\qquad\qquad\qquad(18) (18)是同相分量(I)和正交分量(Q)的脉冲波形,即二进制数据序列{ a n a_n an},{ b n b_n bn}的正弦型加权函数。

2.MSK信号与FSK的联系

下面通过MSK的I-Q形式来讨论MSK信号与FSK的联系:用积化和差公式对(17)中成分进行变形,得到: C ( t ) c o s 2 π f c t = 1 2 c o s [ 2 π ( f c + 1 4 T b ) t ] + 1 2 c o s [ 2 π ( f c − 1 4 T b ) t ] S ( t ) s i n 2 π f c t = − 1 2 c o s [ 2 π ( f c + 1 4 T b ) t ] + 1 2 c o s [ 2 π ( f c − 1 4 T b ) t ] ( 19 ) C(t)cos2\pi f_ct=\frac12cos[2\pi(f_c+\frac{1}{4T_b})t]+\frac12cos[2\pi(f_c-\frac{1}{4T_b})t]\\ S(t)sin2\pi f_ct=-\frac12cos[2\pi(f_c+\frac{1}{4T_b})t]+\frac12cos[2\pi(f_c-\frac{1}{4T_b})t]\\ \qquad(19) C(t)cos2πfct=21cos[2π(fc+4Tb1)t]+21cos[2π(fc4Tb1)t]S(t)sin2πfct=21cos[2π(fc+4Tb1)t]+21cos[2π(fc4Tb1)t](19)代入(17)得: s M S K ( t ) = 2 E b T b [ ( a n + b n 2 ) c o s [ 2 π ( f c + 1 4 T b ) ] + ( a n − b n 2 ) c o s [ 2 π ( f c − 1 4 T b ) ] ] , n T b ≤ t ≤ ( n + 1 ) T b ( 20 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}\bigl[(\frac{a_n+b_n}{2})cos[2\pi(f_c+\frac{1}{4T_b})]+(\frac{a_n-b_n}{2})cos[2\pi(f_c-\frac{1}{4T_b})]\bigr],\quad nT_b\leq t \leq (n+1)T_b\qquad(20) sMSK(t)=Tb2Eb [(2an+bn)cos[2π(fc+4Tb1)]+(2anbn)cos[2π(fc4Tb1)]],nTbt(n+1)Tb(20)因此,当 α = 1 时 a n = b n \alpha=1时a_n=b_n α=1an=bn,有 s M S K ( t ) = 2 E b T b c o s [ 2 π ( f c + 1 4 T b ) t ] ( 21 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}cos[2\pi(f_c+\frac{1}{4T_b})t]\qquad(21) sMSK(t)=Tb2Eb cos[2π(fc+4Tb1)t](21)此时频率为 f c + 1 4 T b f_c+\frac{1}{4T_b} fc+4Tb1.
α = − 1 时 a n = − b n \alpha=-1时a_n=-b_n α=1an=bn,有 s M S K ( t ) = 2 E b T b c o s [ 2 π ( f c − 1 4 T b ) t ] ( 21 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}cos[2\pi(f_c-\frac{1}{4T_b})t]\qquad(21) sMSK(t)=Tb2Eb cos[2π(fc4Tb1)t](21)此时频率为 f c − 1 4 T b f_c-\frac{1}{4T_b} fc4Tb1.
α = 1 α= 1 α=1时,MSK信号频率为 f c + 1 4 T b f_c+\frac{1}{4T_b} fc+4Tb1 α = − 1 α= -1 α=1时,MSK信号频率为 f c − 1 4 T b f_c-\frac{1}{4T_b} fc4Tb1;通过信号频率的变化反应信息,属于一种FSK频移键控。

3.MSK与OQPSK的联系

MSK是一种特殊的OQPSK;先补充OQPSK的相关知识

QPSK和OQPSK 正交相移键控:

Quadriphase-Shift-Keying(QPSK) 是多进制相移键控 M-ary phase-shift-keying (M-PSK) 当M=4时的一种特殊情况,此时 T s = T b l o g 2 M = 2 T b T_s=T_blog_2M=2T_b Ts=Tblog2M=2Tb,相位取值集合 { β i } = { π 4 3 π 4 5 π 4 7 π 4 } \{\beta_i\}=\{\frac{\pi}{4}\frac{3\pi}{4}\frac{5\pi}{4}\frac{7\pi}{4}\} {βi}={4π43π45π47π},其实数域上的数学表达式为: s ( t ) = P m I ( t ) c o s ( 2 π f c t + θ c ) − P m Q ( t ) s i n ( 2 π f c t + θ c ) , s(t)=\sqrt{P}m_I(t)cos(2\pi f_c t +\theta_c)-\sqrt{P}m_Q(t)sin(2\pi f_c t +\theta_c), s(t)=P mI(t)cos(2πfct+θc)P mQ(t)sin(2πfct+θc), m I ( t ) = ∑ n = − ∞ ∞ a I n p ( t − n T s ) , m Q ( t ) = ∑ n = − ∞ ∞ a Q n p ( t − n T s ) ( 9 ) m_I(t)=\sum_{n=-\infty}^\infty a_{In}p(t-nT_s),m_Q(t)=\sum_{n=-\infty}^\infty a_{Qn}p(t-nT_s) \qquad (9) mI(t)=n=aInp(tnTs),mQ(t)=n=aQnp(tnTs)(9)显然,当 a I n 和 a Q n a_{In}和a_{Qn} aInaQn同时改变时,相位可能发生180°的跳变,这种幅度上大范围的波动是我们所不希望看到的,因此,我们将同相分量和正交分量错开 T s 2 s \frac{T_s}{2}s 2Tss的时间,得到带偏移量的正交相移键控 Offset (Staggered) Quadriphase-Shift-Keying ,这样一来, a I n 和 a Q n a_{In}和a_{Qn} aInaQn不会同时发生改变,将相位波动缩小到了90°以内,包络跳动更小,频谱旁瓣也更小(the smaller the flfluctuation, the smaller the sidelobe regeneration and vice versa)。其实数域上的数学模型为: s ( t ) = P m I ( t ) c o s ( 2 π f c t + θ c ) − P m Q ( t ) s i n ( 2 π f c t + θ c ) , s(t)=\sqrt{P}m_I(t)cos(2\pi f_c t +\theta_c)-\sqrt{P}m_Q(t)sin(2\pi f_c t +\theta_c), s(t)=P mI(t)cos(2πfct+θc)P mQ(t)sin(2πfct+θc), m I ( t ) = ∑ n = − ∞ ∞ a I n p ( t − n T s ) , m Q ( t ) = ∑ n = − ∞ ∞ a Q n p ( t − ( n + 1 2 ) T s ) ( 10 ) m_I(t)=\sum_{n=-\infty}^\infty a_{In}p(t-nT_s),m_Q(t)=\sum_{n=-\infty}^\infty a_{Qn}p(t-(n+\frac12)T_s) \qquad (10) mI(t)=n=aInp(tnTs),mQ(t)=n=aQnp(t(n+21)Ts)(10) 而对于多进制相移键控来说存在相位模糊的问题(M-fold phase ambiguity),为了解决这个问题引入差分编码(differential encoding);以上都是为了更好的理解从正交看MSK与OQPSK的联系所作的铺垫,不继续深入讨论。

下面讨论MSK与OQPSK的联系:

由(18)可知:由于C(t)和S(t)是彼此Tb的偏移,则由(18)式表示的SMSK(t)可能是半正弦脉冲成型的OQPSK形式。为了证实这一点,进一步讨论实际的I-Q数据序列{ a n a_n an}、{ b n b_n bn}和输入序列{ α i \alpha_i αi}之间的关系以及改变规律。由于每个比特时间内 α i \alpha_i αi都可能变化, a n a_n an b n b_n bn也同样可能在每个比特时间里变化。然而由于式(14)相位连续性的约束,实际上 a n a_n an仅在C(t)的过零点改变, b n b_n bn仅在S(t)的过零点改变。又C(t)和S(t)的过零点各自是间隔2Tb的,因此an和bn在每2Tb时间处是连续的不发生跳变,如下图):
在这里插入图片描述
进一步由于C(t)和S(t)的波形以2Tb为周期,可以用在I和Q通道的合成的正的有时限脉冲来把这个符号变化和I-Q序列本身相结合。特别地,定义脉冲波形为:
p ( t ) = { s i n π t 2 T b , 0 ≤ t ≤ 2 T b 0 , o t h e r w i s e ( 22 ) p(t) =\begin{cases}sin\frac{\pi t}{2T_b}, & 0\leq t \leq 2T_b \\0, & otherwise\end{cases} \qquad(22) p(t)={sin2Tbπt,0,0t2Tbotherwise(22)
这里需要注意到 s i n π t 2 T b sin\frac{\pi t}{2T_b} sin2Tbπt的周期为4Tb,因此在 0 ≤ t ≤ 2 T b 0\leq t \leq 2T_b 0t2Tb时,p(t)恒为正,则MSK的I-Q表达可以表示为:
s M S K ( t ) = 2 E b T b ( d c ( t ) c o s 2 π f c t − d s ( t ) s i n 2 π f c t ) , n T b ≤ t ≤ ( n + 1 ) T b ( 23 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}(d_c(t)cos2\pi f_ct-d_s(t)sin2\pi f_ct),\quad nT_b\leq t \leq (n+1)T_b \qquad(23) sMSK(t)=Tb2Eb (dc(t)cos2πfctds(t)sin2πfct),nTbt(n+1)Tb(23)
其中,
d c ( t ) = ∑ n c n p ( t − ( 2 n − 1 ) T b ) d s ( t ) = ∑ n d n p ( t − 2 n T b ) ( 23 ) d_c(t)=\sum_n c_np(t-(2n-1)T_b)\\ d_s(t)=\sum_n d_np(t-2nT_b)\\ \qquad(23) dc(t)=ncnp(t(2n1)Tb)ds(t)=ndnp(t2nTb)(23) c n = ( − 1 ) n a 2 n − 1 d n = ( − 1 ) n b 2 n ( 24 ) c_n=(-1)^na_{2n-1}\\d_n=(-1)^nb_{2n}\\ \qquad(24) cn=(1)na2n1dn=(1)nb2n(24)
为完成MSK和正弦脉冲成形OQPSK的类比,需要理解从输入序列{αn}获得(24)需要的I-Q序列的特征,即{a2n-1}和{b2n}是{αn}的差分编码{Vn}序列的奇偶分量。以下图为例:

在这里插入图片描述
从图中还可以看出,b2n和a2n-1不会在同一个Tb里发生改变,保证了载波相位不会发生180°的跳变,符合OQPSK的特性。
最终得到MSK的I-Q表示如下图所示。
在这里插入图片描述
从图中可以看到MSK的生成类似于OPQSK,只不过脉冲波形是半正弦而不是矩形,另外,以1/Ts作串并变换前对输入序列进行了差分编码。
最后,式(20)的MSK表达式同样可以以差分编码的形式写出:
对奇数n:
s M S K ( t ) = 2 E b T b [ ( v n − 1 + v n 2 ) c o s [ 2 π ( f c + 1 4 T b ) ] − ( v n − 1 − v n 2 ) c o s [ 2 π ( f c − 1 4 T b ) ] ] , n T b ≤ t ≤ ( n + 1 ) T b ( 25 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}\bigl[(\frac{v_{n-1}+v_n}{2})cos[2\pi(f_c+\frac{1}{4T_b})]-(\frac{v_{n-1}-v_n}{2})cos[2\pi(f_c-\frac{1}{4T_b})]\bigr],\quad nT_b\leq t \leq (n+1)T_b\qquad(25) sMSK(t)=Tb2Eb [(2vn1+vn)cos[2π(fc+4Tb1)](2vn1vn)cos[2π(fc4Tb1)]],nTbt(n+1)Tb(25)
对偶数n:
s M S K ( t ) = 2 E b T b [ ( v n − 1 + v n 2 ) c o s [ 2 π ( f c + 1 4 T b ) ] + ( v n − 1 − v n 2 ) c o s [ 2 π ( f c − 1 4 T b ) ] ] , n T b ≤ t ≤ ( n + 1 ) T b ( 26 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}\bigl[(\frac{v_{n-1}+v_n}{2})cos[2\pi(f_c+\frac{1}{4T_b})]+(\frac{v_{n-1}-v_n}{2})cos[2\pi(f_c-\frac{1}{4T_b})]\bigr],\quad nT_b\leq t \leq (n+1)T_b\qquad(26) sMSK(t)=Tb2Eb [(2vn1+vn)cos[2π(fc+4Tb1)]+(2vn1vn)cos[2π(fc4Tb1)]],nTbt(n+1)Tb(26)
写在一个式子中即:
s M S K ( t ) = 2 E b T b [ ( v n − 1 + v n 2 ) c o s [ 2 π ( f c + 1 4 T b ) ] + ( − 1 ) n ( v n − 1 − v n 2 ) c o s [ 2 π ( f c − 1 4 T b ) ] ] , n T b ≤ t ≤ ( n + 1 ) T b ( 27 ) s_{MSK}(t)=\sqrt{\frac{2E_b}{T_b}}\bigl[(\frac{v_{n-1}+v_n}{2})cos[2\pi(f_c+\frac{1}{4T_b})]+(-1)^n(\frac{v_{n-1}-v_n}{2})cos[2\pi(f_c-\frac{1}{4T_b})]\bigr],\quad nT_b\leq t \leq (n+1)T_b\qquad(27) sMSK(t)=Tb2Eb [(2vn1+vn)cos[2π(fc+4Tb1)]+(1)n(2vn1vn)cos[2π(fc4Tb1)]],nTbt(n+1)Tb(27)

三、MSK的CPM调制和I-Q调制仿真

关于MSK的调制网上有很多Matlab仿真程序,这里附上我的,唯一的优点就是注释非常详细…
MSK的CPM调制
MSK的正交调制程序还没有通过审核,有机会再补上,如若需要可以去我的主页里下载。

下面是部分仿真波形

CPM调制

CPM1

CPM2

I-Q调制

IQ1

IQ2

  • 14
    点赞
  • 90
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值