其次,进行图像预处理(倾斜矫正、去背景、、去噪、方向矫正、图像增强等),
再次,进行行定位,行识别和后处理(核心)
最后,在最终ocr识别结果后我们主要还会再进行两方面的应用处理,一方面主要是版面还原(基于版面分析的结果),另外一方面是结构化提取。
卷积层参数包括卷积核尺寸、步长和填充量,它们共同决定了输出特征图的尺寸,是卷积神经网络的超参数。其中卷积核大小代表了相邻节点连接的数量;步长定义了卷积核相邻两次扫过特征图时位置的距离;填充可抵消卷积计算中尺寸收缩的影响。
其次,进行图像预处理(倾斜矫正、去背景、、去噪、方向矫正、图像增强等),
再次,进行行定位,行识别和后处理(核心)
最后,在最终ocr识别结果后我们主要还会再进行两方面的应用处理,一方面主要是版面还原(基于版面分析的结果),另外一方面是结构化提取。
卷积层参数包括卷积核尺寸、步长和填充量,它们共同决定了输出特征图的尺寸,是卷积神经网络的超参数。其中卷积核大小代表了相邻节点连接的数量;步长定义了卷积核相邻两次扫过特征图时位置的距离;填充可抵消卷积计算中尺寸收缩的影响。