截至我所知的信息(2021年9月),"TrainingArguments"是Hugging Face的Transformers库中的一个类,用于配置和管理模型训练的参数。以下是一些常见的"TrainingArguments"类的参数:
-
output_dir:模型训练输出的目录,包括保存模型和其他训练输出。
-
overwrite_output_dir:如果设置为True,将覆盖输出目录中的内容。
-
num_train_epochs:训练的轮数(epochs)。
-
per_device_train_batch_size:每个训练设备上的批量大小。
-
per_device_eval_batch_size:每个评估设备上的批量大小。
-
save_steps:定义多少个更新步骤保存一次模型。
-
save_total_limit:保存的最大模型数量,用于控制磁盘空间占用。
-
evaluation_strategy:评估策略,可选值有"steps"(每隔一定步骤评估)和"epoch"(每个epoch评估一次)。
-
logging_steps:定义多少个更新步骤打印一次训练日志。
-
logging_dir:日志输出的目录。
-
do_train:是否进行训练。
-
do_eval:是否进行评估。
-
learning_rate:初始学习率。
-
weight_decay:权重衰减(L2正则化)。
-
gradient_accumulation_steps:梯度累积步骤,用于更大的批次训练。
-
seed:随机数种子,用于可复现性。
-
report_to:定义输出的报告格式,例如"tensorboard"、“wandb”(Weights & Biases)等。
-
disable_tqdm:是否禁用tqdm进度条。
-
load_best_model_at_end:训练结束时是否加载最佳模型。
-
metric_for_best_model:用于选择最佳模型的指标。
请注意,参数可能在不同版本的Transformers库中有所变化,建议查阅官方文档以获得最新和详细的参数列表。你可以在Hugging Face的Transformers库文档中找到更多关于"TrainingArguments"类的信息。