2.机器学习-算法1


image-20211104211054521

1.转换器与预估器

1.转换器

想一下之前做的特征工程的步骤?

  • 1、实例化 (实例化的是一个转换器类(Transformer))
  • 2、调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)

我们把特征工程的接口称之为转换器,其中转换器调用有这么几种形式

  • fit_transform
  • fit
  • transform

这几个方法之间的区别是什么呢?我们看以下代码就清楚了

In [1]: from sklearn.preprocessing import StandardScaler

In [2]: std1 = StandardScaler()

In [3]: a = [[1,2,3], [4,5,6]]

In [4]: std1.fit_transform(a)
Out[4]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

In [5]: std2 = StandardScaler()

In [6]: std2.fit(a)
Out[6]: StandardScaler(copy=True, with_mean=True, with_std=True)

In [7]: std2.transform(a)
Out[7]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

从中可以看出,fit_transform的作用相当于transform加上fit。但是为什么还要提供单独的fit呢, 我们还是使用原来的std2来进行标准化看看

In [8]: b = [[7,8,9], [10, 11, 12]]

In [9]: std2.transform(b)
Out[9]:
array([[3., 3., 3.],
       [5., 5., 5.]])

In [10]: std2.fit_transform(b)
Out[10]:
array([[-1., -1., -1.],
       [ 1.,  1.,  1.]])

2 估计器(sklearn机器学习算法的实现)

在sklearn中,估计器(estimator)是一个重要的角色,是一类实现了算法的API

  • 1、用于分类的估计器:
    • sklearn.neighbors k-近邻算法
    • sklearn.naive_bayes 贝叶斯
    • sklearn.linear_model.LogisticRegression 逻辑回归
    • sklearn.tree 决策树与随机森林
  • 2、用于回归的估计器:
    • sklearn.linear_model.LinearRegression 线性回归
    • sklearn.linear_model.Ridge 岭回归
  • 3、用于无监督学习的估计器
    • sklearn.cluster.KMeans 聚类

3 估计器工作流程

估计器工作流程

2.K-近邻算法

1 什么是K-近邻算法

image-20211104123526085
  • 根据你的“邻居”来推断出你的类别

1.1 K-近邻算法(KNN)概念

K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法

  • 定义

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

来源:KNN算法最早是由Cover和Hart提出的一种分类算法

  • 距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离 ,关于距离公式会在后面进行讨论

img img

1.2 电影类型分析

假设我们现在有几部电影

image-20190316204421392

其中? 号电影不知道类别,如何去预测?我们可以利用K近邻算法的思想

image-20190316204448303

分别计算每个电影和被预测电影的距离,然后求解

image-20190316204517137

1.3 KNN算法流程总结

1)计算已知类别数据集中的点与当前点之间的距离

2)按距离递增次序排序

3)选取与当前点距离最小的k个点

4)统计前k个点所在的类别出现的频率

5)返回前k个点出现频率最高的类别作为当前点的预测分类

K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=‘auto’)
    • n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数
    • algorithm:{‘auto’,‘ball_tree’,‘kd_tree’,‘brute’},可选用于计算最近邻居的算法:‘ball_tree’将会使用 BallTree,‘kd_tree’将使用 KDTree。‘auto’将尝试根据传递给fit方法的值来决定最合适的算法。 (不同实现方式影响效率)

2.模型选择与调优

交叉验证目的:为了让被评估的模型更加准确可信

交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。

分析: 我们之前知道数据分为训练集和测试集,但是**为了让从训练得到模型结果更加准确。**做以下处理

  • 训练集:训练集+验证集
  • 测试集:测试集
交叉验证过程

问题:那么这个只是对于参数得出更好的结果,那么怎么选择或者调优参数呢?

超参数搜索-网格搜索(Grid Search)

通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。

超参数

模型选择与调优API

  • sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
    • 对估计器的指定参数值进行详尽搜索
    • estimator:估计器对象
    • param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
    • cv:指定几折交叉验证
    • fit:输入训练数据
    • score:准确率
    • 结果分析:
      • bestscore:在交叉验证中验证的最好结果_
      • bestestimator:最好的参数模型
      • cvresults:每次交叉验证后的验证集准确率结果和训练集准确率结果

3 用KNN算法对鸢尾花进行分类

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
def knn_iris():
    '''
    用KNN算法对鸢尾花进行分类
    :return:
    '''
    # 1.获取数据
    iris = load_iris()
    # 2.划分数据集
    # 返回 训练集特征值 测试集特征值  训练集目标值 测试集目标值
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22, test_size=0.2)
    # 3.特征工程标准化  此数据不用做降维处理
    transfer = StandardScaler()
    # fit() 计算 每一列的平均值、标准差
    # transform() (x-mean)/std进行最终的转换
    x_train = transfer.fit_transform(x_train)
    # 对测试集进行标准化,训练集调用fit_transfor(),测试集调用transform用训练集的平均值、标准差带入公示进行最终的转换
    x_test = transfer.transform(x_test)
    # 4.KNN算法预估器
    estimator = KNeighborsClassifier(n_neighbors=2)
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 方法1:直接对比真实值和与测试
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("y_test:\n", y_test)
    print("直接对比真实值和预测值:\n", y_predict == y_test)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)
    return None

image-20211104212207661

4 用KNN算法分类,添加网格搜索和交叉验证

def knn_iris_gscn():
    '''
    用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证
    :return:
    '''
    # 1.获取数据
    iris = load_iris()
    # 2.划分数据集
    # 返回 训练集特征值 测试集特征值  训练集目标值 测试集目标值
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22, test_size=0.2)
    # 3.特征工程标准化  此数据不用做降维处理
    transfer = StandardScaler()
    # fit() 计算 每一列的平均值、标准差
    # transform() (x-mean)/std进行最终的转换
    x_train = transfer.fit_transform(x_train)
    # 对测试集进行标准化,训练集调用fit_transfor(),测试集调用transform用训练集的平均值、标准差带入公示进行最终的转换
    x_test = transfer.transform(x_test)
    # 4.KNN算法预估器 p=1曼哈顿距离 p=2欧氏距离 默认欧氏距离
    estimator = KNeighborsClassifier()

    # 加入网格搜索和交叉验证
    # 参数准备
    params_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
    # estimator:估计器对象 param_grid:估计器参数(dict){"n_neighbors":[1,9,11]} cv:指定几折交叉验证 fit():输入训练集数据 score()准确率
    estimator = GridSearchCV(estimator, param_grid=params_dict, cv=10)
    estimator.fit(x_train, y_train)
    # 5.模型评估
    # 方法1:直接对比真实值和与测试
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("y_test:\n", y_test)
    print("直接对比真实值和预测值:\n", y_predict == y_test)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    # 最佳参数:best_params_
    print("最佳参数\n", estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果\n", estimator.best_score_)
    # 最佳估计器:best_estimator_
    print("最佳估计器\n", estimator.best_estimator_)
    # 交叉验证结果:cv_results_
    print("交叉验证结果\n", estimator.cv_results_)
    return None


# 运行结果
y_predict:
 [0 2 1 2 1 1 1 1 1 0 2 1 2 2 0 2 1 1 1 1 0 2 0 1 2 0 2 2 2 2]
y_test:
 [0 2 1 2 1 1 1 2 1 0 2 1 2 2 0 2 1 1 2 1 0 2 0 1 2 0 2 2 2 2]
直接对比真实值和预测值:
 [ True  True  True  True  True  True  True False  True  True  True  True
  True  True  True  True  True  True False  True  True  True  True  True
  True  True  True  True  True  True]
准确率为:
 0.9333333333333333
最佳参数
 {'n_neighbors': 5}
最佳结果
 0.9666666666666666
最佳估计器
 KNeighborsClassifier()
交叉验证结果
 {'mean_fit_time': array([0.00059471, 0.00040169, 0.00039732, 0.00049963, 0.00039873,
       0.00059736]), 'std_fit_time': array([0.00048576, 0.00049201, 0.00048692, 0.00049964, 0.00048834,
       0.00048775]), 'mean_score_time': array([0.00100403, 0.00099268, 0.00089741, 0.00099623, 0.0010962 ,
       0.0010021 ]), 'std_score_time': array([1.94739385e-05, 1.83725301e-05, 2.99643138e-04, 4.43773610e-04,
       2.95656031e-04, 1.20468404e-05]), 'param_n_neighbors': masked_array(data=[1, 3, 5, 7, 9, 11],
             mask=[False, False, False, False, False, False],
       fill_value='?',
            dtype=object), 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}, {'n_neighbors': 7}, {'n_neighbors': 9}, {'n_neighbors': 11}], 'split0_test_score': array([1., 1., 1., 1., 1., 1.]), 'split1_test_score': array([0.91666667, 0.91666667, 1.        , 1.        , 0.91666667,
       0.91666667]), 'split2_test_score': array([1.        , 0.91666667, 1.        , 1.        , 1.        ,
       1.        ]), 'split3_test_score': array([0.91666667, 0.91666667, 0.91666667, 0.91666667, 0.91666667,
       0.91666667]), 'split4_test_score': array([0.91666667, 1.        , 1.        , 1.        , 1.        ,
       1.        ]), 'split5_test_score': array([1., 1., 1., 1., 1., 1.]), 'split6_test_score': array([0.91666667, 0.91666667, 0.91666667, 0.91666667, 0.91666667,
       0.91666667]), 'split7_test_score': array([0.83333333, 0.83333333, 0.91666667, 0.91666667, 0.91666667,
       0.91666667]), 'split8_test_score': array([0.91666667, 0.91666667, 0.91666667, 0.91666667, 0.91666667,
       0.91666667]), 'split9_test_score': array([1., 1., 1., 1., 1., 1.]), 'mean_test_score': array([0.94166667, 0.94166667, 0.96666667, 0.96666667, 0.95833333,
       0.95833333]), 'std_test_score': array([0.05335937, 0.05335937, 0.04082483, 0.04082483, 0.04166667,
       0.04166667]), 'rank_test_score': array([5, 5, 1, 1, 3, 3])}

Process finished with exit code 0

5 facebook案例

FBlocation介绍

数据介绍:将根据用户的位置,准确性和时间戳预测用户正在查看的业务。

train.csv,test.csv 
row_id:登记事件的ID
xy:坐标
准确性:定位准确性 
时间:时间戳
place_id:业务的ID,这是您预测的目标

分析

  • 对于数据做一些基本处理(这里所做的一些处理不一定达到很好的效果,我们只是简单尝试,有些特征我们可以根据一些特征选择的方式去做处理)

    • 1、缩小数据集范围 DataFrame.query()

    • 4、删除没用的日期数据 DataFrame.drop(可以选择保留)

    • 5、将签到位置少于n个用户的删除

      place_count = data.groupby(‘place_id’).count()

      tf = place_count[place_count.row_id > 3].reset_index()

      data = data[data[‘place_id’].isin(tf.place_id)]

  • 分割数据集

  • 标准化处理

  • k-近邻预测

    import pandas as pd
    
    # 1.获取数据
    data = pd.read_csv("../resource/FBlocation/train.csv")
    
    data.head()
    
    row_idxyaccuracytimeplace_id
    000.79419.0809544707028523065625
    115.95674.7968131865551757726713
    228.30787.0407743226481137537235
    337.36652.5165657045876567393236
    444.09611.1307314721307440663949
    # 2.基本的数据处理
    # 1)缩小数据范围
    data = data.query("x < 2.5 & x > 2 & y < 1.5 & y > 1.0")
    
    data.head()
    
    row_idxyaccuracytimeplace_id
    1121122.23601.3655666231747663031065
    1801802.20031.2541656101952358558474
    3673672.41081.3213745796676644108708
    8748742.08221.19733201435663229876087
    102210222.01601.1659652079933244363975
    # 2) 处理时间特征
    time_value = pd.to_datetime(data["time"], unit="s")
    
    date = pd.DatetimeIndex(time_value.values)
    
    data["day"] = date.day
    
    data["weekday"] = date.weekday
    
    data["hour"] = date.hour
    
    data.head()
    
    row_idxyaccuracytimeplace_iddayweekdayhour
    1121122.23601.3655666231747663031065835
    1801802.20031.2541656101952358558474831
    3673672.41081.32137457966766441087087217
    8748742.08221.197332014356632298760872415
    102210222.01601.1659652079933244363975359
    # 3) 过滤签到次数少的地点
    place_count = data.groupby("place_id").count()["row_id"]
    data.groupby("place_id").count().head()
    
    row_idxyaccuracytimedayweekdayhour
    place_id
    101216585311111111
    101399173733333333
    10146052712828282828282828
    101564574344444444
    10172361543131313131313131
    place_count[place_count>3]
    
    place_id
    1014605271     28
    1015645743      4
    1017236154     31
    1024951487      5
    1028119817      4
                 ... 
    9936666116    140
    9954155328      8
    9980625005     16
    9994257798     25
    9996671132     18
    Name: row_id, Length: 950, dtype: int64
    
    data_final = data[data["place_id"].isin(place_count[place_count > 3].index.values)]
    data_final.head()
    
    row_idxyaccuracytimeplace_iddayweekdayhour
    1121122.23601.3655666231747663031065835
    3673672.41081.32137457966766441087087217
    8748742.08221.197332014356632298760872415
    102210222.01601.1659652079933244363975359
    104510452.38591.166049850337864382408736119
    # 筛选特征值和目标值
    x=data_final[["x","y","accuracy","day","weekday","hour"]]
    y=data_final["place_id"]
    
    x.head()
    
    xyaccuracydayweekdayhour
    1122.23601.365566835
    3672.41081.3213747217
    8742.08221.19733202415
    10222.01601.165965359
    10452.38591.16604986119
    y.head()
    
    112     7663031065
    367     6644108708
    874     3229876087
    1022    3244363975
    1045    6438240873
    Name: place_id, dtype: int64
    
    #数据集划分
    from sklearn.model_selection import train_test_split
    
    x_train, x_test, y_train, y_test = train_test_split(x, y)
    
    x_train.head()
    
    xyaccuracydayweekdayhour
    131222222.31331.0623626111
    157035142.35841.090560720
    34043692.32671.0723714618
    57876112.35611.3800681318
    224099692.49311.2487562419
    x_test.head()
    
    xyaccuracydayweekdayhour
    101940682.33131.2534887216
    227262912.14791.2861158614
    146879702.32231.136265506
    132076372.03731.0999686113
    185143192.01601.3451196113
    x_train
    
    xyaccuracydayweekdayhour
    131222222.31331.0623626111
    157035142.35841.090560720
    34043692.32671.0723714618
    57876112.35611.3800681318
    224099692.49311.2487562419
    .....................
    82803412.47581.4988686110
    181688612.10591.352465357
    184174692.33391.141384616
    226522772.26251.3795568310
    11121622.38271.372063947

    60682 rows × 6 columns

    from sklearn.preprocessing import StandardScaler
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.model_selection import GridSearchCV
    
        # 3.特征工程标准化  此数据不用做降维处理
        transfer = StandardScaler()
            # fit() 计算 每一列的平均值、标准差
            # transform() (x-mean)/std进行最终的转换
        x_train = transfer.fit_transform(x_train)
            # 对测试集进行标准化,训练集调用fit_transfor(),测试集调用transform用训练集的平均值、标准差带入公示进行最终的转换
        x_test = transfer.transform(x_test)
        # 4.KNN算法预估器 p=1曼哈顿距离 p=2欧氏距离 默认欧氏距离
        estimator = KNeighborsClassifier()
    
        # 加入网格搜索和交叉验证
        # 参数准备
        params_dict = {"n_neighbors":[5,7,9]}
        # estimator:估计器对象 param_grid:估计器参数(dict){"n_neighbors":[1,9,11]} cv:指定几折交叉验证 fit():输入训练集数据 score()准确率
        estimator = GridSearchCV(estimator, param_grid=params_dict, cv=3)
        estimator.fit(x_train, y_train)
        # 5.模型评估
            #方法1:直接对比真实值和与测试
        y_predict = estimator.predict(x_test)
        print("y_predict:\n",y_predict)
        print("y_test:\n", y_test)
        print("直接对比真实值和预测值:\n",y_predict==y_test)
        #方法2:计算准确率
        score = estimator.score(x_test, y_test)
        print("准确率为:\n",score)
    
        # 最佳参数:best_params_
        print("最佳参数\n",estimator.best_params_)
        # 最佳结果:best_score_
        print("最佳结果\n",estimator.best_score_)
        # 最佳估计器:best_estimator_
        print("最佳估计器\n",estimator.best_estimator_)
        # 交叉验证结果:cv_results_
        print("交叉验证结果\n",estimator.cv_results_)
    
    E:\Program Files\Environment\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:676: UserWarning: The least populated class in y has only 1 members, which is less than n_splits=3.
      warnings.warn(
    
    
    y_predict:
     [2585551753 5111412226 3588028567 ... 6396652784 3157530019 8812115701]
    y_test:
     10194068    2585551753
    22726291    5111412226
    14687970    6940115252
    13207637    5781604363
    18514319    6171384989
                   ...    
    6271017     5541564636
    18742421    5529091830
    15255113    6828787147
    21947752    2809108094
    26200146    8812115701
    Name: place_id, Length: 20228, dtype: int64
    直接对比真实值和预测值:
     10194068     True
    22726291     True
    14687970    False
    13207637     True
    18514319    False
                ...  
    6271017     False
    18742421    False
    15255113    False
    21947752    False
    26200146     True
    Name: place_id, Length: 20228, dtype: bool
    准确率为:
     0.3637037769428515
    最佳参数
     {'n_neighbors': 7}
    最佳结果
     0.33497576141406077
    最佳估计器
     KNeighborsClassifier(n_neighbors=7)
    交叉验证结果
     {'mean_fit_time': array([0.07247265, 0.06882707, 0.06881801]), 'std_fit_time': array([1.24466489e-03, 1.65780462e-05, 1.75561285e-06]), 'mean_score_time': array([0.76148359, 0.78323086, 0.85836903]), 'std_score_time': array([0.02202489, 0.00621847, 0.07285544]), 'param_n_neighbors': masked_array(data=[5, 7, 9],
                 mask=[False, False, False],
           fill_value='?',
                dtype=object), 'params': [{'n_neighbors': 5}, {'n_neighbors': 7}, {'n_neighbors': 9}], 'split0_test_score': array([0.33710698, 0.33582163, 0.33112517]), 'split1_test_score': array([0.33227864, 0.33257527, 0.32817521]), 'split2_test_score': array([0.33391012, 0.33653038, 0.33217976]), 'mean_test_score': array([0.33443191, 0.33497576, 0.33049338]), 'std_test_score': array([0.0020054 , 0.00172189, 0.00169479]), 'rank_test_score': array([2, 1, 3])}
    

5 小结

  • K-近邻算法简介【了解】
    • 定义:就是通过你的"邻居"来判断你属于哪个类别
    • 如何计算你到你的"邻居"的距离:一般时候,都是使用欧氏距离

3 朴素贝叶斯算法

1 什么是朴素贝叶斯分类方法

垃圾邮件分类 文章分类

2 概率基础

2.1 概率(Probability)定义

  • 概率定义为一件事情发生的可能性
    • 扔出一个硬币,结果头像朝上
    • 某天是晴天
  • P(X) : 取值在[0, 1]

2.2 女神是否喜欢计算案例

在讲这两个概率之前我们通过一个例子,来计算一些结果:

计算概率
  • 问题如下:
image-20211104231718221

那么其中有些问题我们计算的结果不正确,或者不知道计算,我们有固定的公式去计算

image-20211104233253069

2.3 条件概率与联合概率

  • 联合概率:包含多个条件,且所有条件同时成立的概率
    • 记作:P(A,B)
    • 特性:P(A, B) = P(A)P(B)
  • 条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率
    • 记作:P(A|B)
    • 特性:P(A1,A2|B) = P(A1|B)P(A2|B)

注意:此条件概率的成立,是由于A1,A2相互独立的结果(记忆)

这样我们计算结果为:

p(程序员, 匀称) =  P(程序员)P(匀称) =3/7*(4/7) = 12/49 
P(产品, 超重|喜欢) = P(产品|喜欢)P(超重|喜欢)=1/2 *  1/4 = 1/8

那么,我们知道了这些知识之后,继续回到我们的主题中。朴素贝叶斯如何分类,这个算法经常会用在文本分类,那就来看文章分类是一个什么样的问题?

文章分类引入

3 贝叶斯公式

3.1 公式

贝叶斯公式

那么这个公式如果应用在文章分类的场景当中,我们可以这样看:

贝叶斯公式理解

公式分为三个部分:

  • P©:每个文档类别的概率(某文档类别数/总文档数量)
  • P(W│C):给定类别下特征(被预测文档中出现的词)的概率
    • 计算方法:P(F1│C)=Ni/N (训练文档中去计算)
      • Ni为该F1词在C类别所有文档中出现的次数
      • N为所属类别C下的文档所有词出现的次数和
  • P(F1,F2,…) 预测文档中每个词的概率

如果计算两个类别概率比较:

概率前面比较大小

所以我们只要比较前面的大小就可以,得出谁的概率大

3.2 文章分类计算

例一

image-20211104233809557

​ P(Tokyo|C)=0,这时要加入拉普拉斯平滑系数

image-20211104234159444

比较最终算的两个值那个大救赎有哪一类

例二

  • 假设我们从训练数据集得到如下信息
分类计算例子
  • 计算结果
科技:P(科技|影院,支付宝,云计算) = 𝑃(影院,支付宝,云计算|科技)∗P(科技)=(8/100)(20/100)(63/100)(30/90) = 0.00456109

娱乐:P(娱乐|影院,支付宝,云计算) = 𝑃(影院,支付宝,云计算|娱乐)∗P(娱乐)=(56/121)(15/121)(0/121)(60/90) = 0

思考:我们计算出来某个概率为0,合适吗?

3.3 拉普拉斯平滑系数

目的:防止计算出的分类概率为0

平滑系数公式
P(娱乐|影院,支付宝,云计算) =P(影院,支付宝,云计算|娱乐)P(娱乐) =P(影院|娱乐)*P(支付宝|娱乐)*P(云计算|娱乐)

3.4 API

  • sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
    • 朴素贝叶斯分类
    • alpha:拉普拉斯平滑系数

4 案例

def nb_news():
    '''
    用朴素贝叶斯算法对新闻进行分类
    :return:
    '''
    # 1.获取数据
    news = fetch_20newsgroups(subset="all")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(news.data, news.target, train_size=0.25)
    # 3.特征工程 特征抽取-TfidfVectorizer
    transfer = TfidfVectorizer()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.朴素贝叶斯算法预估器
    estimator = MultinomialNB()
    estimator.fit(x_train, y_train)
    # 5.模型评估
        #方法一: 直接对比真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接对比真实值和预测值:\n",y_test  == y_predict)
        #方法二: 计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n",score)

    return None
# 运算结果
y_predict:
 [ 3  3  5 ... 11  6  7]
直接对比真实值和预测值:
 [False  True  True ... False  True  True]
准确率为:
 0.7384506544039618

4 决策树

1 认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法

怎么理解这句话?通过一个对话例子

相亲对话

想一想这个女生为什么把年龄放在最上面判断!!!!!!!!!

1.1 决策树分类原理详解

为了更好理解决策树具体怎么分类的,我们通过一个问题例子?

银行贷款数

问题:如何对这些客户进行分类预测?你是如何去划分?

有可能你的划分是这样的

贷款划分1

那么我们怎么知道这些特征哪个更好放在最上面,那么决策树的真是划分是这样的

贷款划分2

2 信息增益

如果一个系统是确定的为1,信息熵最小

如果一个系统每个概率相同,信息熵最大

定义与公式

特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:

信息增益公式

公式的详细解释:

信息增益公式详解

注:信息增益表示得知特征X的信息而息的不确定性减少的程度使得类Y的信息熵减少的程度

贷款特征重要计算

银行贷款数
  • 我们以年龄特征来计算:
1、g(D, 年龄) = H(D) -H(D|年龄) = 0.971-[5/15H(青年)+5/15H(中年)+5/15H(老年]  #属性的信息增益=系统的信息熵-属性的信息熵

2、H(D) = -(6/15log(6/15)+9/15log(9/15))=0.971 #系统的信息熵

3#属性的信息熵
    H(青年) = -(3/5log(3/5) +2/5log(2/5))
	H(中年)=-(3/5log(3/5) +2/5log(2/5))
	H(老年)=-(4/5og(4/5)+1/5log(1/5))

我们以A1、A2、A3、A4代表年龄、有工作、有自己的房子和贷款情况。最终计算的结果g(D, A1) = 0.313, g(D, A2) = 0.324, g(D, A3) = 0.420,g(D, A4) = 0.363。所以我们选择A3 作为划分的第一个特征。找信息增益最大的,这样我们就可以一棵树慢慢建立

决策树的三种算法实现

当然决策树的原理不止信息增益这一种,还有其他方法。但是原理都类似,我们就不去举例计算。

  • ID3
    • 信息增益 最大的准则
  • C4.5
    • 信息增益比 最大的准则
  • CART
    • 分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的默认原则
    • 优势:划分更加细致(从后面例子的树显示来理解)

决策树API

  • class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
    • 决策树分类器
    • criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
    • max_depth:树的深度大小
    • random_state:随机数种子
  • 其中会有些超参数:max_depth:树的深度大小
    • 其它超参数我们会结合随机森林讲解

保存树的结构到dot文件

  • 1、sklearn.tree.export_graphviz() 该函数能够导出DOT格式
    • tree.export_graphviz(estimator,out_file='tree.dot’,feature_names=[‘’,’’])
  • 2、工具:(能够将dot文件转换为pdf、png)
    • 安装graphviz
    • ubuntu:sudo apt-get install graphviz Mac:brew install graphviz
  • 3、运行命令
    • 然后我们运行这个命令
    • dot -Tpng tree.dot -o tree.png

3 用决策树对鸢尾花进行分类

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,export_graphviz
def decision_iris():
    '''
    用决策树对鸢尾花进行分类

    :return:
    '''
    # 1.获取数据集
    iris = load_iris()
    # 2.划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data, iris.target)
    # 3.决策树预估器
    estimator = DecisionTreeClassifier(criterion="entropy")
    estimator.fit(x_train,y_train)
    # 4.模型评估
    y_predict = estimator.predict(x_test)
    print("y_predict:\n", y_predict)
    print("直接对比真实值和预测值:\n", y_predict == y_test)
    # 方法2:计算准确率
    score = estimator.score(x_test, y_test)
    print("准确率为:\n", score)

    export_graphviz(estimator, out_file="decision_tree_ picture/iris_tree.dot", feature_names=iris.feature_names)

    return  None

image-20211105083550326

4 案例:泰坦尼克号乘客生存预测

  • 泰坦尼克号数据

在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名 单,由Michael A. Findlay编辑。我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。

1、乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。

2、其中age数据存在缺失。

import pandas as pd
# 1.获取数据
titanic = pd.read_csv("../resource/titanic/titanic.csv")
# 2.数据处理
#     缺失值处理
#     特征值->字典类型
# 3.准备好特征值 目标值
# 4.划分数据集
# 5.特征工程
# 6.决策树预估器流程
# 7.模型评估
titanic.head()
row.namespclasssurvivednameageembarkedhome.destroomticketboatsex
011st1Allen, Miss Elisabeth Walton29.0000SouthamptonSt Louis, MOB-524160 L2212female
121st0Allison, Miss Helen Loraine2.0000SouthamptonMontreal, PQ / Chesterville, ONC26NaNNaNfemale
231st0Allison, Mr Hudson Joshua Creighton30.0000SouthamptonMontreal, PQ / Chesterville, ONC26NaN(135)male
341st0Allison, Mrs Hudson J.C. (Bessie Waldo Daniels)25.0000SouthamptonMontreal, PQ / Chesterville, ONC26NaNNaNfemale
451st1Allison, Master Hudson Trevor0.9167SouthamptonMontreal, PQ / Chesterville, ONC22NaN11male
# 筛选特征值和目标值
x = titanic[["pclass", "age", "sex"]]
y = titanic["survived"]
x
pclassagesex
01st29.0000female
11st2.0000female
21st30.0000male
31st25.0000female
41st0.9167male
............
13083rdNaNmale
13093rdNaNmale
13103rdNaNmale
13113rdNaNfemale
13123rdNaNmale

1313 rows × 3 columns

y.head()
0    1
1    0
2    0
3    0
4    1
Name: survived, dtype: int64
# 2.数据处理
# 1)缺失值处理
x["age"].fillna(x["age"].mean(), inplace=True)
x.head()
pclassagesex
01st29.0000female
11st2.0000female
21st30.0000male
31st25.0000female
41st0.9167male
# 2)转换成字典
x = x.to_dict(orient="records")
x[:5]
[{'pclass': '1st', 'age': 29.0, 'sex': 'female'},
 {'pclass': '1st', 'age': 2.0, 'sex': 'female'},
 {'pclass': '1st', 'age': 30.0, 'sex': 'male'},
 {'pclass': '1st', 'age': 25.0, 'sex': 'female'},
 {'pclass': '1st', 'age': 0.9167, 'sex': 'male'}]
# 4.划分数据集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y)
# 3.字典特征抽取
from sklearn.feature_extraction import DictVectorizer
transfer = DictVectorizer()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

KNN算法对泰坦尼克号的生存进行预测

from sklearn.tree import DecisionTreeClassifier,export_graphviz
# 4.决策树预估器
estimator = DecisionTreeClassifier(criterion="entropy",max_depth=5)
estimator.fit(x_train,y_train)
# 5.模型评估
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接对比真实值和预测值:\n", y_predict == y_test)
# 方法2:计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)
y_predict:
 [0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0
 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0
 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0
 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1]
直接对比真实值和预测值:
 590      True
1157     True
641     False
398      True
853      True
        ...  
563      True
358      True
121      True
1097     True
83       True
Name: survived, Length: 329, dtype: bool
准确率为:
 0.790273556231003

KNN算法对泰坦尼克号的生存进行预测

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
# 4.KNN算法预估器 p=1曼哈顿距离 p=2欧氏距离 默认欧氏距离
estimator = KNeighborsClassifier()
# 加入网格搜索和交叉验证
# 参数准备
params_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
# estimator:估计器对象 param_grid:估计器参数(dict){"n_neighbors":[1,9,11]} cv:指定几折交叉验证 fit():输入训练集数据 score()准确率
estimator = GridSearchCV(estimator, param_grid=params_dict, cv=10)
estimator.fit(x_train, y_train)
# 5.模型评估
# 方法1:直接对比真实值和与测试
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("y_test:\n", y_test)
print("直接对比真实值和预测值:\n", y_predict == y_test)
# 方法2:计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

# 最佳参数:best_params_
print("最佳参数\n", estimator.best_params_)
# 最佳结果:best_score_
print("最佳结果\n", estimator.best_score_)
# 最佳估计器:best_estimator_
print("最佳估计器\n", estimator.best_estimator_)
# 交叉验证结果:cv_results_
print("交叉验证结果\n", estimator.cv_results_)
y_predict:
 [0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0
 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0
 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1
 1 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0
 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0
 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1]
y_test:
 590     0
1157    0
641     1
398     1
853     0
       ..
563     0
358     1
121     0
1097    0
83      1
Name: survived, Length: 329, dtype: int64
直接对比真实值和预测值:
 590      True
1157     True
641     False
398      True
853      True
        ...  
563      True
358      True
121      True
1097     True
83       True
Name: survived, Length: 329, dtype: bool
准确率为:
 0.7872340425531915
最佳参数
 {'n_neighbors': 7}
最佳结果
 0.8039270253555969
最佳估计器
 KNeighborsClassifier(n_neighbors=7)
交叉验证结果
 {'mean_fit_time': array([0.00149481, 0.00090151, 0.00109046, 0.0009779 , 0.00118496,
       0.00090187]), 'std_fit_time': array([9.20082306e-04, 3.01925683e-04, 5.37038408e-04, 2.36335716e-05,
       7.34021641e-04, 3.00797672e-04]), 'mean_score_time': array([0.00553658, 0.00467844, 0.00538712, 0.00519798, 0.00479972,
       0.00488379]), 'std_score_time': array([0.00158095, 0.0009864 , 0.00118098, 0.00087649, 0.0004    ,
       0.00103625]), 'param_n_neighbors': masked_array(data=[1, 3, 5, 7, 9, 11],
             mask=[False, False, False, False, False, False],
       fill_value='?',
            dtype=object), 'params': [{'n_neighbors': 1}, {'n_neighbors': 3}, {'n_neighbors': 5}, {'n_neighbors': 7}, {'n_neighbors': 9}, {'n_neighbors': 11}], 'split0_test_score': array([0.80808081, 0.82828283, 0.7979798 , 0.83838384, 0.81818182,
       0.81818182]), 'split1_test_score': array([0.62626263, 0.56565657, 0.75757576, 0.75757576, 0.75757576,
       0.76767677]), 'split2_test_score': array([0.62626263, 0.5959596 , 0.76767677, 0.75757576, 0.76767677,
       0.76767677]), 'split3_test_score': array([0.55555556, 0.5959596 , 0.77777778, 0.7979798 , 0.80808081,
       0.80808081]), 'split4_test_score': array([0.52040816, 0.52040816, 0.84693878, 0.84693878, 0.82653061,
       0.79591837]), 'split5_test_score': array([0.6122449 , 0.60204082, 0.83673469, 0.83673469, 0.81632653,
       0.79591837]), 'split6_test_score': array([0.62244898, 0.63265306, 0.85714286, 0.83673469, 0.84693878,
       0.84693878]), 'split7_test_score': array([0.55102041, 0.55102041, 0.7755102 , 0.75510204, 0.75510204,
       0.73469388]), 'split8_test_score': array([0.6122449 , 0.62244898, 0.76530612, 0.82653061, 0.79591837,
       0.79591837]), 'split9_test_score': array([0.58163265, 0.58163265, 0.78571429, 0.78571429, 0.80612245,
       0.79591837]), 'mean_test_score': array([0.61161616, 0.60960627, 0.7968357 , 0.80392703, 0.79984539,
       0.79269223]), 'std_test_score': array([0.07428195, 0.07940273, 0.03473885, 0.03570535, 0.02912713,
       0.02913109]), 'rank_test_score': array([5, 6, 3, 1, 2, 4])}

随机森林对泰坦尼克号的生存进行预测

from sklearn.ensemble import RandomForestClassifier
# 4.随机深林算法预估器 
estimator = RandomForestClassifier()
# 加入网格搜索和交叉验证
# 参数准备
params_dict = {"n_estimators": [100, 200, 300, 400, 500, 1200],"max_depth":[4,5,6,7,8],"criterion":["entropy"]}
# estimator:估计器对象 param_grid:估计器参数(dict){"n_neighbors":[1,9,11]} cv:指定几折交叉验证 fit():输入训练集数据 score()准确率
estimator = GridSearchCV(estimator, param_grid=params_dict, cv=2)
estimator.fit(x_train, y_train)
# 5.模型评估
# 方法1:直接对比真实值和与测试
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("y_test:\n", y_test)
print("直接对比真实值和预测值:\n", y_predict == y_test)
# 方法2:计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)

# 最佳参数:best_params_
print("最佳参数\n", estimator.best_params_)
# 最佳结果:best_score_
print("最佳结果\n", estimator.best_score_)
# 最佳估计器:best_estimator_
print("最佳估计器\n", estimator.best_estimator_)
# 交叉验证结果:cv_results_
print("交叉验证结果\n", estimator.cv_results_)
y_predict:
 [0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0
 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0
 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0
 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0
 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1]
y_test:
 590     0
1157    0
641     1
398     1
853     0
       ..
563     0
358     1
121     0
1097    0
83      1
Name: survived, Length: 329, dtype: int64
直接对比真实值和预测值:
 590      True
1157     True
641     False
398      True
853      True
        ...  
563      True
358      True
121      True
1097     True
83       True
Name: survived, Length: 329, dtype: bool
准确率为:
 0.8145896656534954
最佳参数
 {'criterion': 'entropy', 'max_depth': 5, 'n_estimators': 300}
最佳结果
 0.8241869918699187
最佳估计器
 RandomForestClassifier(criterion='entropy', max_depth=5, n_estimators=300)
交叉验证结果
 {'mean_fit_time': array([0.10773706, 0.19297969, 0.30615187, 0.3949554 , 0.49763954,
       1.58897257, 0.1530757 , 0.3373847 , 0.42813838, 0.62685108,
       1.13304913, 1.80858314, 0.13982916, 0.30716383, 0.46723175,
       0.61357844, 0.76146626, 1.85352802, 0.15277028, 0.32195222,
       0.47836339, 0.66029692, 1.33696401, 2.25642073, 0.19825661,
       0.38971925, 0.65994167, 0.74528587, 1.19055343, 2.95836234]), 'std_fit_time': array([7.97224045e-03, 5.05089760e-04, 1.09999180e-02, 9.85383987e-04,
       1.19386911e-02, 3.60212326e-02, 1.24795437e-02, 3.00669670e-03,
       2.06164122e-02, 6.43358231e-02, 1.00861788e-02, 8.12751055e-02,
       1.53231621e-03, 2.97200680e-03, 1.04892254e-02, 8.19456577e-03,
       1.31447315e-02, 2.14662552e-02, 1.70080662e-02, 1.77611113e-02,
       4.54127789e-03, 4.00140285e-02, 3.85288119e-01, 2.02952027e-01,
       1.51988268e-02, 9.79542732e-03, 4.45888042e-02, 3.46029997e-02,
       1.50036097e-01, 5.44578314e-01]), 'mean_score_time': array([0.01096785, 0.01993704, 0.03096426, 0.04036295, 0.05187905,
       0.14403391, 0.01249444, 0.03091896, 0.03937757, 0.05281842,
       0.0688498 , 0.18329692, 0.01442325, 0.0289228 , 0.04340398,
       0.05485666, 0.06832874, 0.16604424, 0.01512146, 0.02568245,
       0.04339993, 0.05734289, 0.09398592, 0.18908441, 0.01494157,
       0.04238474, 0.05141592, 0.07779431, 0.0899986 , 0.17841971]), 'std_score_time': array([5.12599945e-06, 1.66893005e-05, 1.20401382e-05, 5.27977943e-04,
       3.00967693e-03, 4.77623940e-03, 4.98890877e-04, 9.95516777e-04,
       4.79340553e-04, 6.79492950e-06, 1.57356262e-05, 1.78389549e-02,
       1.51050091e-03, 1.99365616e-03, 3.47173214e-03, 2.77757645e-05,
       4.87208366e-04, 5.46932220e-04, 1.11722946e-03, 2.08139420e-04,
       4.82201576e-04, 4.48501110e-03, 2.41731405e-02, 7.41183758e-03,
       1.01578236e-03, 5.44941425e-03, 3.43656540e-03, 9.87052917e-04,
       7.70485401e-03, 1.41978264e-04]), 'param_criterion': masked_array(data=['entropy', 'entropy', 'entropy', 'entropy', 'entropy',
                   'entropy', 'entropy', 'entropy', 'entropy', 'entropy',
                   'entropy', 'entropy', 'entropy', 'entropy', 'entropy',
                   'entropy', 'entropy', 'entropy', 'entropy', 'entropy',
                   'entropy', 'entropy', 'entropy', 'entropy', 'entropy',
                   'entropy', 'entropy', 'entropy', 'entropy', 'entropy'],
             mask=[False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False],
       fill_value='?',
            dtype=object), 'param_max_depth': masked_array(data=[4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
                   7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8],
             mask=[False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False],
       fill_value='?',
            dtype=object), 'param_n_estimators': masked_array(data=[100, 200, 300, 400, 500, 1200, 100, 200, 300, 400, 500,
                   1200, 100, 200, 300, 400, 500, 1200, 100, 200, 300,
                   400, 500, 1200, 100, 200, 300, 400, 500, 1200],
             mask=[False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False, False, False,
                   False, False, False, False, False, False],
       fill_value='?',
            dtype=object), 'params': [{'criterion': 'entropy', 'max_depth': 4, 'n_estimators': 100}, {'criterion': 'entropy', 'max_depth': 4, 'n_estimators': 200}, {'criterion': 'entropy', 'max_depth': 4, 'n_estimators': 300}, {'criterion': 'entropy', 'max_depth': 4, 'n_estimators': 400}, {'criterion': 'entropy', 'max_depth': 4, 'n_estimators': 500}, {'criterion': 'entropy', 'max_depth': 4, 'n_estimators': 1200}, {'criterion': 'entropy', 'max_depth': 5, 'n_estimators': 100}, {'criterion': 'entropy', 'max_depth': 5, 'n_estimators': 200}, {'criterion': 'entropy', 'max_depth': 5, 'n_estimators': 300}, {'criterion': 'entropy', 'max_depth': 5, 'n_estimators': 400}, {'criterion': 'entropy', 'max_depth': 5, 'n_estimators': 500}, {'criterion': 'entropy', 'max_depth': 5, 'n_estimators': 1200}, {'criterion': 'entropy', 'max_depth': 6, 'n_estimators': 100}, {'criterion': 'entropy', 'max_depth': 6, 'n_estimators': 200}, {'criterion': 'entropy', 'max_depth': 6, 'n_estimators': 300}, {'criterion': 'entropy', 'max_depth': 6, 'n_estimators': 400}, {'criterion': 'entropy', 'max_depth': 6, 'n_estimators': 500}, {'criterion': 'entropy', 'max_depth': 6, 'n_estimators': 1200}, {'criterion': 'entropy', 'max_depth': 7, 'n_estimators': 100}, {'criterion': 'entropy', 'max_depth': 7, 'n_estimators': 200}, {'criterion': 'entropy', 'max_depth': 7, 'n_estimators': 300}, {'criterion': 'entropy', 'max_depth': 7, 'n_estimators': 400}, {'criterion': 'entropy', 'max_depth': 7, 'n_estimators': 500}, {'criterion': 'entropy', 'max_depth': 7, 'n_estimators': 1200}, {'criterion': 'entropy', 'max_depth': 8, 'n_estimators': 100}, {'criterion': 'entropy', 'max_depth': 8, 'n_estimators': 200}, {'criterion': 'entropy', 'max_depth': 8, 'n_estimators': 300}, {'criterion': 'entropy', 'max_depth': 8, 'n_estimators': 400}, {'criterion': 'entropy', 'max_depth': 8, 'n_estimators': 500}, {'criterion': 'entropy', 'max_depth': 8, 'n_estimators': 1200}], 'split0_test_score': array([0.81504065, 0.81504065, 0.81300813, 0.81300813, 0.81300813,
       0.81300813, 0.80894309, 0.81504065, 0.81504065, 0.81504065,
       0.81504065, 0.81707317, 0.80081301, 0.79674797, 0.79878049,
       0.79878049, 0.79674797, 0.79674797, 0.79674797, 0.79471545,
       0.79674797, 0.79471545, 0.79471545, 0.79674797, 0.79674797,
       0.79471545, 0.79674797, 0.79674797, 0.79674797, 0.79674797]), 'split1_test_score': array([0.82723577, 0.82520325, 0.82520325, 0.82520325, 0.82520325,
       0.82520325, 0.82723577, 0.82520325, 0.83333333, 0.83130081,
       0.83333333, 0.82723577, 0.83536585, 0.83130081, 0.83130081,
       0.82926829, 0.83536585, 0.82926829, 0.82520325, 0.82113821,
       0.82723577, 0.82723577, 0.82723577, 0.82723577, 0.81910569,
       0.82520325, 0.82317073, 0.82113821, 0.81910569, 0.81707317]), 'mean_test_score': array([0.82113821, 0.82012195, 0.81910569, 0.81910569, 0.81910569,
       0.81910569, 0.81808943, 0.82012195, 0.82418699, 0.82317073,
       0.82418699, 0.82215447, 0.81808943, 0.81402439, 0.81504065,
       0.81402439, 0.81605691, 0.81300813, 0.81097561, 0.80792683,
       0.81199187, 0.81097561, 0.81097561, 0.81199187, 0.80792683,
       0.80995935, 0.80995935, 0.80894309, 0.80792683, 0.80691057]), 'std_test_score': array([0.00609756, 0.0050813 , 0.00609756, 0.00609756, 0.00609756,
       0.00609756, 0.00914634, 0.0050813 , 0.00914634, 0.00813008,
       0.00914634, 0.0050813 , 0.01727642, 0.01727642, 0.01626016,
       0.0152439 , 0.01930894, 0.01626016, 0.01422764, 0.01321138,
       0.0152439 , 0.01626016, 0.01626016, 0.0152439 , 0.01117886,
       0.0152439 , 0.01321138, 0.01219512, 0.01117886, 0.0101626 ]), 'rank_test_score': array([ 5,  6,  8,  8,  8,  8, 12,  6,  1,  3,  1,  4, 12, 16, 15, 16, 14,
       18, 21, 27, 19, 21, 21, 19, 27, 24, 24, 26, 27, 30])}

5 决策树总结

  • 优点:
    • 简单的理解和解释,树木可视化。
  • 缺点:
    • 决策树学习者可以创建不能很好地推广数据的过于复杂的树,这被称为过拟合。
  • 改进:
    • 减枝cart算法(决策树API当中已经实现,随机森林参数调优有相关介绍)
    • 随机森林

注:企业重要决策,由于决策树很好的分析能力,在决策过程应用较多, 可以选择特征

5 集成学习方法之随机森林

1.随机森林的认识

  • 什么是集成学习方法

​ 集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。

​ 例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终投票结果就是True

  • 什么是随机森林

​ 在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

  • 随机森林原理过程

    学习算法根据下列算法而建造每棵树:

    用N来表示训练用例(样本)的个数,M表示特征数目。

    ​ 1、一次随机选出一个样本,重复N次, (有可能出现重复的样本)

    ​ 2、随机去选出m个特征, m <<M,建立决策树

    采取bootstrap抽样

  • 为什么采用BootStrap抽样

    为什么要随机抽样训练集?

    ​ 如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的

    为什么要有放回地抽样?

    ​ 如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。

2 代码

API

  • class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, random_state=None, min_samples_split=2)

    • 随机森林分类器
    • n_estimators:integer,optional(default = 10)森林里的树木数量120,200,300,500,800,1200
    • criteria:string,可选(default =“gini”)分割特征的测量方法
    • max_depth:integer或None,可选(默认=无)树的最大深度 5,8,15,25,30
    • max_features="auto”,每个决策树的最大特征数量
      • If “auto”, then max_features=sqrt(n_features).
      • If “sqrt”, then max_features=sqrt(n_features) (same as “auto”).
      • If “log2”, then max_features=log2(n_features).
      • If None, then max_features=n_features.
    • bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样
    • min_samples_split:节点划分最少样本数
    • min_samples_leaf:叶子节点的最小样本数
  • 超参数:n_estimator, max_depth, min_samples_split,min_samples_lea

# 随机森林去进行预测
rf = RandomForestClassifier()

param = {"n_estimators": [120,200,300,500,800,1200], "max_depth": [5, 8, 15, 25, 30]}

# 超参数调优
gc = GridSearchCV(rf, param_grid=param, cv=2)

gc.fit(x_train, y_train)

print("随机森林预测的准确率为:", gc.score(x_test, y_test))

3 总结

  • 在当前所有算法中,具有极好的准确率
  • 能够有效地运行在大数据集上,处理具有高维特征的输入样本,而且不需要降维
    array([ 5, 6, 8, 8, 8, 8, 12, 6, 1, 3, 1, 4, 12, 16, 15, 16, 14,
    18, 21, 27, 19, 21, 21, 19, 27, 24, 24, 26, 27, 30])}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值