安装spacy+zh_core_web_sm避坑指南

本文介绍了Python自然语言处理库spacy的安装步骤,包括解决安装问题、下载whl文件以及安装zh_core_web_sm和en_core_web_sm模型。通过示例展示了英文和中文文本的测试,用于词性分析和实体识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、spacy简介

二、安装spacy

三、安装zh_core_web_sm

四、安装en_core_web_sm

五、效果测试

5.1 英文测试

5.2 中文测试


一、spacy简介

spacy是Python自然语言处理(NLP)软件包,可以对自然语言文本做词性分析、命名实体识别、依赖关系刻画,以及词嵌入向量的计算和可视化等。

二、安装spacy

使用“pip install spacy"报错, 或者安装完spacy,无法正常调用,可以通过以下链接将whl文件下载到本地,然后 cd 到文件路径下,通过 pip 安装。

下载链接:

Archived: Python Extension Packages for Windows - Christoph Gohlke (uci.edu)

选择对应的版本:

三、安装zh_core_web_sm

通过下方链接下载 whl 文件到本地: 

zh_core_web_sm · Releases · explosion/spacy-models (github.com)

选择对应的版本:

  

下载好对应版本的zh_core_web_sm.whl文件,cd 文件保存目录,然后通过pip安装。

安装成功提示: 

四、安装en_core_web_sm

通过下方链接下载 whl 文件到本地:

en_core_web_sm · Releases · explosion/spacy-models (github.com)

选择对应的版本:

 

下载好对应版本的zh_core_web_sm.whl文件,cd 文件保存目录,然后通过pip安装。

 

五、效果测试

5.1 英文测试

# 导入英文类
from spacy.lang.en import English 
# 实例化一个nlp类对象,包含管道pipeline
nlp = English()
# print(nlp)
doc = nlp("December is excited!")
# 迭代tokens
for token in doc:
    print(token.text)
    
token = doc[1]
print(token.text)

输出结果:

December
is
excited
!
is

5.2 中文测试

# 处理文本
nlp = spacy.load('zh_core_web_sm')
doc = nlp("微软准备用十亿美金买下这家英国的创业公司。")

# 遍历识别出的实体
for ent in doc.ents:
    # 打印实体文本及其标注
    print(ent.text, ent.label_)

输出结果:

微软 ORG
十亿美金 MONEY
英国 NORP

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dr.Petrichor

作者逐个题目分析的噢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值