Bert+FGSM/PGD实现中文文本分类(Loss=0.5L1+0.5L2)

该博客详细介绍了如何使用FGSM和PGD来增强Bert模型的文本分类能力。通过在训练中加入对抗样本,模型能更好地应对对抗攻击,提高分类准确率和鲁棒性。训练过程中采用了0.5L1+0.5L2的损失函数,结合原样本和对抗样本进行训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

任务目标:在使用FGSM/PGD来训练Bert模型进行文本分类,其实现原理可以简单概括为以下几个步骤:

  1. 对原始文本每个词转换为对应的嵌入向量。
  2. 将每个嵌入向量与一个小的扰动向量相加,从而生成对抗样本。这个扰动向量的大小可以通过一个超参数来控制。
  3. 将生成的对抗样本和原始样本一起用于训练模型。具体来说,可以将它们组成一个batch,然后使用交叉熵损失函数来训练模型。
  4. 在训练过程中,可以周期性地增加扰动向量的大小,从而使得模型逐渐适应更强的攻击。这个过程可以称为“逐步增强对抗性训练”。
  5. 通过使用FGSM/PGD来训练Bert模型,可以使得模型对对抗样本更加鲁棒,从而提高其在真实场景中的泛化能力和分类准确率。
  6. 在训练过程中我们设置 总样本Loss=0.5原样本Loss+0.5对抗样本Loss,来提升模型的鲁棒性。

目录

一、导入所需的库和模块

二、加载数据集

三、定义模型和优化器

四、 基于原生Bert文本分类

4.1 定义训练函数

4.2 定义测试函数

五、Bert+FGSM文本分类 

5.1 定义FGSM对抗训练函数 

5.2 定义训练模型函数

5.3 定义测试函数

六、Bert+PGD文本分类

6.1 定义PGD攻击函数

6.2 定义训练函数

6.3 定义测试函数


在使用FGSM/PGD来训练Bert模型进行文本分类时,其实现原理可以概括为以下几个步骤: 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dr.Petrichor

作者逐个题目分析的噢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值