Human Gene Functions(DP+LCS变种)

本文探讨了一种最长公共子序列(LCS)问题的变种,即在两个DNA序列中通过插入空格来最大化匹配价值。文章详细介绍了如何使用动态规划解决此问题,并给出了C++代码实现,包括价值矩阵的构建、DP状态转移方程及结果串的构造。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
题意:
给你两个序列,序列的取值是(A,G,T,C),并且给出一个他们之间的对应价值矩阵在这里插入图片描述
现在问题是,给你两个序列,你可以通过增加在字符串中间增加空格,最后要你求增加空格后的最大价值。
思路:可以增加空格,那么一个简单的思想是通过增加空格使得字母匹配数最大化,这样就可以获得最大价值。那么难免会出现不匹配的情况,我们也需要考虑。这题和LCS的思路基本上是一样的,唯一不同的是LCS的三种状态转移是有条件的,而这个题是没有条件的,即价值越大越好。举个例子在这里插入图片描述
给出两个序列加空格的方式只有三种,那么我们可以从这个角度出现,逐步往长度大的求就行了。
定义dp[i] [j]:字符串s1从[1,i ]与字符串s2从[1,j ]的最大价值
转移方程:
在这里插入图片描述
字符价值矩阵我用map装了。

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e4 + 10;
char s1[maxn],s2[maxn];
int dp[maxn][maxn];
map<char,map<char,int> >mp;
void lcs(int n,char s1[],int m,char s2[]){
	for(int i = 1; i <= n; i++){
		dp[0][i] = dp[0][i - 1] + mp['_'][s1[i]];
	}
	for(int i = 1; i <= m; i++){
		dp[i][0] = dp[i - 1][0] + mp[s2[i]]['_'];
	}
    for(int i = 1; i <= m; i++ ){
        for(int j = 1; j <= n; j++){
            int l1 = dp[i][j - 1] + mp[s1[j]]['_'];
            int l2 = dp[i - 1][j] + mp[s2[i]]['_'];
            int l3 = dp[i - 1][j -1] + mp[s1[j]][s2[i]];
            dp[i][j] = max(l1,max(l2,l3));
        }
    }
    cout<<dp[m][n]<<endl;
}
int main(){
    int t;
    int g[][10]={{5,-1,-2,-1,-3},{-1,5,-3,-2,-4},{-2,-3,5,-2,-2},{-1,-2,-2,5,-1},{-3,-4,-2,-1,0}};
    string s = "ACGT_";
    for(int i = 0; i <s.size(); i++)
    for(int j = 0; j <s.size(); j++)
    mp[s[i]][s[j]] = g[i][j];
    while(scanf("%d",&t)!=EOF){
    	while(t--){
    		int len1 ,len2;
       		scanf("%d%s",&len1,s1+1);
        	scanf("%d%s",&len2,s2+1);
			lcs(len1,s1,len2,s2);
		}
    }
}

构造结果串

#include<bits/stdc++.h>
using namespace std;
/*
2
7 AGTGATG
5 GTTAG
3 AGT
2 GT
*/
const int maxn = 1e4 + 10;
char s1[maxn],s2[maxn];
int dp[maxn][maxn];
int dir[maxn][maxn];
//dp[i][j]:串1前i个字符与串2前j的字符匹配的最大价值和 
map<char,map<char,int> >mp;
int n,m;
string ans1,ans2;
void construct(int x,int y){
	if(x < 0 || y < 0 || x > m || y > n)return;
	if(dir[x][y] == 3){
		construct(x-1,y-1);
		ans1 += s2[x];
		ans2 += s1[y]; 
	}else if(dir[x][y] == 2){
		construct(x - 1,y);
		ans1 += s2[x];
		ans2 += ' '; 
	}else if(dir[x][y] == 1){
		construct(x,y - 1);
		ans1 += ' ';
		ans2 += s1[y];
	} 
}
void lcs(int n,char s1[],int m,char s2[]){
	ans1.erase();ans2.erase();
	memset(dp,0,sizeof(dp));
	for(int i = 1; i <= n; i++){
		dp[0][i] = dp[0][i - 1] + mp['_'][s1[i]];
		dir[0][i] = 1;
	//	cout<<dp[0][i]<<" ";
	}
	cout<<endl;
	for(int i = 1; i <= m; i++){
		dp[i][0] = dp[i - 1][0] + mp[s2[i]]['_'];
		dir[i][0] = 1;
	//	cout<<dp[i][0]<<" ";
	}
    for(int i = 1; i <= m; i++ ){
        for(int j = 1; j <= n; j++){
            int l1 = dp[i][j - 1] + mp[s1[j]]['_'];
            int l2 = dp[i - 1][j] + mp[s2[i]]['_'];
            int l3 = dp[i - 1][j - 1] + mp[s1[j]][s2[i]];
            if(l1 > l2 && l1 > l3){
            	dir[i][j] = 1;//s1对上空格 
			}
			if(l2 > l1 && l2 > l3){
				dir[i][j] = 2;//s2对上空格 
			}
			if(l3 > l1 && l3 > l2){
				dir[i][j] = 3;//s1对上s2 
			}
            dp[i][j] = max(l1,max(l2,l3));
        }
    }
    //for(int i = 1; i <= m; i++){
    //	for(int j = 1; j <= n; j++){
    //		cout<<dp[i][j]<<" ";
	//	}
	//	cout<<endl;
	//}
	//cout<<endl;
    //for(int i = 0; i <= m; i++){
    //	for(int j = 0; j <= n; j++){
    //		cout<<dir[i][j]<<" ";
	//	}
	//	cout<<endl;
	//}
	construct(m,n);
	cout<<"构造结果串:"<<'\n'; 
	cout<<ans1<<endl<<ans2<<endl;
	cout<<"最优值:"<<dp[m][n]<<endl;
}
int main(){
    int t;
    int g[][10]={{5,-1,-2,-1,-3},{-1,5,-3,-2,-4},{-2,-3,5,-2,-2},{-1,-2,-2,5,-1},{-3,-4,-2,-1,0}};
    string s = "ACGT_";
    for(int i = 0; i <s.size(); i++)
    for(int j = 0; j <s.size(); j++)
    mp[s[i]][s[j]] = g[i][j];
    while(scanf("%d",&t)!=EOF){
    	while(t--){
    		int len1 ,len2;
       		scanf("%d%s",&len1,s1+1);
        	scanf("%d%s",&len2,s2+1);
        	n = len1,m = len2;
			lcs(len1,s1,len2,s2);
		}
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值