转置与置换

转置

A = [ 1 2 4 3 3 1 ] A=\begin{bmatrix}1&2&4\\3&3&1\end{bmatrix} A=[132341],则 A T = [ 1 3 2 3 4 1 ] A^T=\begin{bmatrix}1&3\\2&3\\4&1\end{bmatrix} AT=124331,即 ( A T ) i j = A j i (A^T)_{ij}=A_{ji} (AT)ij=Aji A T A = [ 10 11 7 11 13 11 7 11 17 ] A^TA=\begin{bmatrix}10&11&7\\11&13&11\\7&11&17\end{bmatrix} ATA=1011711131171117,对于所有的矩阵 A A A A T A A^TA ATA都是对称的,对于对称矩阵,其转置等于其本身。

A A − 1 = I AA^{-1}=I AA1=I,两边同时转置得, ( A − 1 ) T A T = I (A^{-1})^TA^T=I (A1)TAT=I,所以有 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T

置换矩阵

置换矩阵是用来完成行互换的矩阵,记作 P P P,即单位矩阵的行重新排列后的矩阵,例如:
互 换 行 一 与 行 二 的 置 换 矩 阵 P 12 = [ 0 1 0 1 0 0 0 0 1 ] 互 换 行 一 与 行 三 的 置 换 矩 阵 P 13 = [ 0 0 1 0 1 0 1 0 0 ] 互 换 行 二 与 行 三 的 置 换 矩 阵 P 23 = [ 1 0 0 0 0 1 0 1 0 ] 互换行一与行二的置换矩阵P_{12}=\begin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}\\互换行一与行三的置换矩阵P_{13}=\begin{bmatrix}0&0&1\\0&1&0\\1&0&0\end{bmatrix}\\互换行二与行三的置换矩阵P_{23}=\begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix} P12=010100001P13=001010100P23=100001010
上面这两个矩阵都是行互换一次的置换矩阵,如果交换所有的行,可以得到下面的矩阵
[ 0 1 0 0 0 1 1 0 0 ] 、 [ 0 0 1 1 0 0 0 1 0 ] \begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}、\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix} 001100010010001100
加上单位矩阵 I I I本身( I I I是不需做任何变换的矩阵,即任何矩阵乘以 I I I等于其本身),如果将这6个矩阵两两相乘,结果仍在这6个矩阵当中,它们的逆也在其中,我们称这6个矩阵构成一个群。

我们还可以得出一个结论:置换矩阵的逆等于其转置,即 P − 1 = P T P^{-1}=P^T P1=PT,并且所有置换矩阵均可逆。对于 n × n n×n n×n的矩阵,总共有 n ! n! n!种置换矩阵。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值