矩阵消元

消元法

有方程组 { x + 2 y + z = 2 3 x + 8 y + z = 12 4 y + z = 2 \left\{\begin{aligned}x+2y+z=2\\3x+8y+z=12\\4y+z=2\end{aligned}\right. x+2y+z=23x+8y+z=124y+z=2,写成矩阵形式 A x = b Ax=b Ax=b [ 1 2 1 3 8 1 0 4 1 ] [ x y z ] = [ 2 12 2 ] \begin{bmatrix}1&2&1\\3&8&1\\0&4&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}2\\12\\2\end{bmatrix} 130284111xyz=2122

消元法的思路:

A = [ 1 2 1 3 8 1 0 4 1 ] row2-3row1 → [ 1 2 1 0 2 − 2 0 4 1 ] row3-2row2 → [ 1 2 1 0 2 − 2 0 0 5 ] = U A=\begin{bmatrix}1&2&1\\3&8&1\\0&4&1\end{bmatrix}\underrightarrow{\text{row2-3row1}}\begin{bmatrix}1&2&1\\0&2&-2\\0&4&1\end{bmatrix}\underrightarrow{\text{row3-2row2}}\begin{bmatrix}1&2&1\\0&2&-2\\0&0&5\end{bmatrix}=U A=130284111 row2-3row1100224121 row3-2row2100220125=U U U U的对角线上的元素为三个主元。首先,主元不能为零;其次,如果在消元时遇到主元位置为零,则需要交换行,使主元不为零。当消元失效时,将不能得到三个主元。

下面进行回代,将矩阵 [ A b ] \begin{bmatrix}A&b\end{bmatrix} [Ab]称为增广矩阵。有 [ A b ] = [ 1 2 1 2 3 8 1 12 0 4 1 2 ] → [ 1 2 1 2 0 2 − 2 6 0 4 1 2 ] → [ 1 2 1 2 0 2 − 2 6 0 0 5 − 10 ] \begin{bmatrix}A&b\end{bmatrix}=\begin{bmatrix}1&2&1&2\\3&8&1&12\\0&4&1&2\end{bmatrix}\to\begin{bmatrix}1&2&1&2\\0&2&-2&6\\0&4&1&2\end{bmatrix}\to\begin{bmatrix}1&2&1&2\\0&2&-2&6\\0&0&5&-10\end{bmatrix} [Ab]=13028411121221002241212621002201252610,此时方程组变为 { x + 2 y + z = 2 2 y − 2 z = 6 5 z = − 10 \left\{\begin{aligned}x+2y+z=2\\2y-2z=6\\5z=-10\end{aligned}\right. x+2y+z=22y2z=65z=10,很容易解出 x = 2 , y = 1 , z = − 2 x=2,y=1,z=-2 x=2,y=1,z=2

消元矩阵

下面介绍用行来计算矩阵乘法:
[ 1 2 7 ] [ ⋯ r o w 1 ⋯ ⋯ r o w 2 ⋯ ⋯ r o w 3 ⋯ ] = 1 × r o w 1 + 2 × r o w 2 + 7 × r o w 3 \begin{bmatrix}1&2&7\end{bmatrix}\begin{bmatrix}\cdots&row_1&\cdots\\\cdots&row_2&\cdots\\\cdots&row_3&\cdots\end{bmatrix}=1×row_1+2×row_2+7×row_3 [127]row1row2row3=1×row1+2×row2+7×row3

从矩阵 [ 1 2 1 3 8 1 0 4 1 ] \begin{bmatrix}1&2&1\\3&8&1\\0&4&1\end{bmatrix} 130284111到矩阵 [ 1 2 1 0 2 − 2 0 4 1 ] \begin{bmatrix}1&2&1\\0&2&-2\\0&4&1\end{bmatrix} 100224121是第二行减去 3 3 3倍的第一行,第一、三行不变,则有
[ 1 0 0 − 3 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] \begin{bmatrix}1&0&0\\-3&1&0\\0&0&1\end{bmatrix}\begin{bmatrix}1&2&1\\3&8&1\\0&4&1\end{bmatrix}=\begin{bmatrix}1&2&1\\0&2&-2\\0&4&1\end{bmatrix} 130010001130284111=100224121
将消元矩阵 [ 1 0 0 − 3 1 0 0 0 1 ] \begin{bmatrix}1&0&0\\-3&1&0\\0&0&1\end{bmatrix} 130010001记作 E 21 ​ E_{21}​ E21,表示第二行第一个元素变为零。同理有
[ 1 0 0 0 1 0 0 − 2 1 ] [ 1 2 1 0 2 − 2 0 4 1 ] = [ 1 2 1 0 2 − 2 0 0 5 ] \begin{bmatrix}1&0&0\\0&1&0\\0&-2&1\end{bmatrix}\begin{bmatrix}1&2&1\\0&2&-2\\0&4&1\end{bmatrix}=\begin{bmatrix}1&2&1\\0&2&-2\\0&0&5\end{bmatrix} 100012001100224121=100220125
将消元矩阵 [ 1 0 0 0 1 0 0 − 2 1 ] \begin{bmatrix}1&0&0\\0&1&0\\0&-2&1\end{bmatrix} 100012001记作 E 32 E_{32} E32 E 21 、 E 32 E_{21}、E_{32} E21E32都为初等矩阵。将上面两步综合起来有
E 32 ( E 21 A ) = U E_{32}(E_{21}A)=U E32(E21A)=U
由于矩阵乘法满足结合律,又可以写成
( E 32 E 21 ) A = U (E_{32}E_{21})A=U (E32E21)A=U
下面介绍一种用于置换两行或两列的矩阵,称为置换矩阵,例如:
[ 0 1 1 0 ] [ a b c d ] = [ c d a b ] \begin{bmatrix}0&1\\1&0\end{bmatrix}\begin{bmatrix}a&b\\c&d\end{bmatrix}=\begin{bmatrix}c&d\\a&b\end{bmatrix} [0110][acbd]=[cadb]
如果交换两列则有
[ a b c d ] [ 0 1 1 0 ] = [ b a d c ] \begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}0&1\\1&0\end{bmatrix}=\begin{bmatrix}b&a\\d&c\end{bmatrix} [acbd][0110]=[bdac]
总结:在左边用矩阵做乘法进行的是行变换,在右边用矩阵做乘法进行的是列变换。即列变换时右乘,行变换时左乘。

通过消元可以将矩阵 A A A变换为 U U U,那么将 U U U变回 A A A的过程称为逆变换。在这里先简单提一下矩阵的逆,这里以 E 21 E_{21} E21为例:

E 21 E_{21} E21 A A A的第二行减去3倍的第一行,那么其逆变换为第二行加3倍的第一行,所以逆矩阵为 [ 1 0 0 3 1 0 0 0 1 ] \begin{bmatrix}1&0&0\\3&1&0\\0&0&1\end{bmatrix} 130010001,我们把 E E E的逆记作 E − 1 E^{-1} E1,有 E − 1 E = I E^{-1}E=I E1E=I,有
[ 1 0 0 3 1 0 0 0 1 ] [ 1 0 0 − 3 1 0 0 0 1 ] = [ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix}1&0&0\\3&1&0\\0&0&1\end{bmatrix}\begin{bmatrix}1&0&0\\-3&1&0\\0&0&1\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix} 130010001130010001=100010001

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值