雅克比和高斯赛德尔迭代求方程组的解

实验原理:

雅克比和高斯的不同之处是,k=1下面那个框框,高斯是a[i][j]*y[j],雅克比是a[i][j]*x[j],就是因为高斯用的是更新之后的x,雅克比没有用更新之后的x。

在代码编写过程中,我没有用到动态数组,感觉输入系数矩阵啥的用动态数组更好些。但是,我写了转化对角占优的部分,这部分也是非常重要的。

代码如下:

/**
 运用雅克比和高斯赛德尔公式求解方程组
 a 比较两种方法的收敛速度
 b 验证收敛条件的正确性
 **/
 #include<iostream>
 #include<math.h>
 #define N 3//4*4方程组
 double A[N][N];
 double C[N][N];
 double b[N];
 double d[N];
 using namespace std;
/**
调整系数矩阵为对角占优,并得到对角占优阵C
**/
void betterA( double A[N][N],double C[N][N],double b[N])
{
    double B[N][N];
    int pos[N];
    int i,j,pos_ele,k;
    double sum,max_ele;
    for (i=0;i<N;i++)
      {
           for(j=0;j<N;j++)
        {
            B[i][j]=fabs(A[i][j]);
        }

      }
        for(i=0;i<N;i++)
        {
            max_ele=B[i][0];
            pos_ele=0;
            sum=0;
            for(j=0;j<N;j++)
            //找这一行最大的元素
            {
                if(B[i][j] > max_ele)
               {
                   max_ele=B[i][j];
                   pos_ele=j;//第i行最大元素在第j列,要标记这个j
               }
               sum=sum+B[i][j];//这一行的元素之和
            }
            sum=sum-max_ele;
            if(max_ele<=sum)//这一行最大元素仍然小于所在行的其他元素的绝对值之和
                {
                    cout<<"不能转化为对角占优矩阵!因为第"<<i<<"行的最大元素"<<max_ele<<"小于同行其他元素之和:"<<sum<<endl;
                    //cout<<sum<<endl<<max_ele<<endl<<pos_ele<<endl<<j;
                    return;
                }
            else if(max_ele>sum)
            {
                pos[i]=pos_ele;//记录第i行最大元素所在的行的下标
                cout<<"第"<<i<<"行最大元素在第"<<pos_ele<<"列"<<endl;
            }
        }

   /**
    set the row pos of matrix C with A(i,:)
    **/
    for(i=0;i<N;i++)
    {
        for(j=0;j<N;j++)
        {
            C[pos[i]][j]=A[i][j];
            d[pos[i]]=b[i];
        }
    }
    return;
}
void jakbi(double C[N][N], double b[N], double x[N], double y[N], double eps, int n)
{
    int k=1,i,j;
    while(1)//小于最大迭代次数
    {
        for(i=0;i<N;i++)
        {
            x[i]=y[i];
            double s=0;
            for(j=0;j<N;j++)
            {
                if(j-i)
                    s=s+C[i][j]*x[j];
                y[i]=(b[i]-s)/C[i][i];
            }
        }
        double max=0;
        for(i=0;i<N;i++)
        {
            if(max<fabs(y[i]-x[i]))//无穷范数
                max=fabs(y[i]-x[i]);
        }
        if(max<eps)//
            {
                cout<<"雅克比迭代成功!迭代次数是"<<k<<endl;
                cout<<"迭代结果是";
           for(int m=0;m<N;m++)
                  cout<<"x["<<m<<"]="<<y[m]<<endl;
                break;
            }
        else if(max>=eps && k<n)
        {
            k++;
            continue;//不满足精度要求,继续迭代
        }
        if(k==n)
      {
        cout<<"迭代失败"<<endl;
        break;
       }
    }
}
void Gauss(double C[N][N], double b[N], double x[N], double y[N], double eps, int n)
{
    int k=1,i,j;
    while(1)//小于最大迭代次数
    {
        for(i=0;i<N;i++)
        {
            x[i]=y[i];//y[0]初值
            double s=0;
            for(j=0;j<N;j++)
            {
                if(j-i)
                    s=s+C[i][j]*y[j];
                y[i]=(b[i]-s)/C[i][i];
            }
        }
        double max=0;
        for(i=0;i<N;i++)
        {
            if(max<fabs(y[i]-x[i]))
                max=fabs(y[i]-x[i]);
        }
        if(max<eps)//
            {
                cout<<"高斯-赛德尔迭代成功!迭代次数是"<<k<<endl;
                cout<<"迭代结果是";
                for(int m=0;m<N;m++)
                  cout<<"x["<<m<<"]="<<y[m]<<endl;
                break;
            }
        else if(max>=eps && k<n)
        {
            k++;
            continue;//不满足精度要求,继续迭代
        }
        if(k==n)
      {
        cout<<"迭代失败"<<endl;
        break;
       }
    }
}
int main()
{
    /**
 输入系数矩阵
 **/
    int i,j,n;
    double eps;
    cout<<"请输入系数矩阵"<<endl;
    for(i=0;i<N;i++)
        for(j=0;j<N;j++)
        cin>>A[i][j];
    cout<<"请输入b["<<N<<"]"<<endl;
    for(i=0;i<N;i++)
        cin>>b[i];
    betterA(A,C,b);
    cout<<"转化为对角占优阵是"<<endl;
    for(i=0;i<N;i++)
    {
        for(j=0;j<N;j++)
            cout<<C[i][j]<<" ";
        cout<<d[i]<<endl;//转化后的b
    }
    cout<<"请输入精度和最大迭代次数";
    cin>>eps>>n;
    double x[N];
    double y[N];
    for(i=0;i<N;i++)
        {
            x[i]=0;
            y[i]=0;//赋初值
        }
    jakbi(C,d,x,y,eps,n);
    for(i=0;i<N;i++)
    {
        x[i]=0;
        y[i]=0;
    }
    Gauss(C,d,x,y,eps,n);
    return 0;
}

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
高斯代和雅克代都是线性方程组代方法。它们的区别在于代的方式不同。 1. 高斯高斯代是按照顺序,每次使用已知的最新的元素来更新未知元素。具体来说,对于 Ax=b 这个线性方程组高斯代的代公式为: $$ x_i^{(k+1)} = \frac{1}{a_{ii}}(b_i - \sum_{j=1}^{i-1}a_{ij}x_j^{(k+1)} - \sum_{j=i+1}^{n}a_{ij}x_j^{(k)}) $$ 其中,$i=1,2,\cdots,n$,$k$ 为代次数,$x_i^{(k+1)}$ 表示第 $k+1$ 次代后第 $i$ 个未知数的值,$a_{ij}$ 表示矩阵 $A$ 的第 $i$ 行第 $j$ 列元素,$b_i$ 表示向量 $b$ 的第 $i$ 个元素。 高斯代需要从 $x_i^{(k)}$ 开始代,当 $i=1$ 时,使用已知的 $x_2^{(k)},x_3^{(k)},\cdots,x_n^{(k)}$ 来计算 $x_1^{(k+1)}$;当 $i=2$ 时,使用已知的 $x_1^{(k+1)},x_3^{(k)},\cdots,x_n^{(k)}$ 来计算 $x_2^{(k+1)}$;以此类推。 2. 雅克雅克代是同时更新所有未知元素。具体来说,对于 Ax=b 这个线性方程组雅克代的代公式为: $$ x_i^{(k+1)} = \frac{1}{a_{ii}}(b_i - \sum_{j=1,j\neq i}^{n}a_{ij}x_j^{(k)}) $$ 其中,$i=1,2,\cdots,n$,$k$ 为代次数,$x_i^{(k+1)}$ 表示第 $k+1$ 次代后第 $i$ 个未知数的值,$a_{ij}$ 表示矩阵 $A$ 的第 $i$ 行第 $j$ 列元素,$b_i$ 表示向量 $b$ 的第 $i$ 个元素。 雅克代需要从 $x_i^{(k)}$ 开始代,当 $i=1$ 时,使用已知的 $x_1^{(k)},x_2^{(k)},\cdots,x_n^{(k)}$ 来计算 $x_1^{(k+1)}$;当 $i=2$ 时,使用已知的 $x_1^{(k+1)},x_2^{(k)},\cdots,x_n^{(k)}$ 来计算 $x_2^{(k+1)}$;以此类推。 两种方法的主要区别在于更新未知元素的顺序不同。高斯代每次只更新一个未知元素,但是每次更新后可以马上使用最新的值来更新下一个未知元素,所以收敛速度比较快。而雅克代每次更新所有未知元素,但是需要等到所有未知元素的值都更新完毕后才能使用最新的值来更新下一次代,所以收敛速度比较慢。但是,雅克代可以并行计算,所以适用于多核处理器等并行计算平台。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值