YOLOv8网络结构图
YOLOv8训练过程
一、首先配置环境;
1.安装Anaconda,并将conda添加到环境变量Path中,
创建虚拟环境 :conda create -n name python=3.x
2.pytorch环境搭建。去pytorch官网下载对应python版本的torch和torchvision安装包whl文件,在虚拟环境下,使用pip install torch… .whl 以及 pip install torchvision… .whl进行安装,安装后进行检测,print(torch. --vison-- )
二、下载源码,安装依赖包
下载yolov8官方源码(https://github.com/ultralytics/ultralytics),使用pip install -r requirements,txt进行所需包的安装
三、数据集准备
数据集的准备。 使用VOC格式的数据集,如下图
DataSet
├─ test
│ ├─ images
│ │ └─ ······
│ └─ labels
│ └─ ······
├─ train
│ ├─ images
│ │ └─ ······
│ └─ labels
│ └─ ······
├─ valid
│ ├─ images
│ │ └─ ······
│ └─ labels
│ └─ ······
├─ data.yaml
└─ yolov8s.yaml
data.yaml主要是保存训练数据集的目录,类别数,类别名,如图所示:
模型参数文件yolov8s.yaml: YOLOV8包含5种模型,主要差异还是在:depth_multiple和width_multiple