YOLOv8训练自定义数据集模型

本文详细介绍了YOLOv8网络的训练过程,包括环境配置(如Anaconda和PyTorch的安装)、数据集准备(VOC格式),以及关键的训练参数设置,涵盖了命令行训练、模型验证、预测和模型导出的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8网络结构图

在这里插入图片描述


YOLOv8训练过程

一、首先配置环境;

1.安装Anaconda,并将conda添加到环境变量Path中,

创建虚拟环境 :conda create -n name python=3.x

2.pytorch环境搭建。去pytorch官网下载对应python版本的torch和torchvision安装包whl文件,在虚拟环境下,使用pip install torch… .whl 以及 pip install torchvision… .whl进行安装,安装后进行检测,print(torch. --vison-- )

二、下载源码,安装依赖包

下载yolov8官方源码(https://github.com/ultralytics/ultralytics),使用pip install -r requirements,txt进行所需包的安装

三、数据集准备

数据集的准备。 使用VOC格式的数据集,如下图

DataSet
├─ test
│ ├─ images
│ │ └─ ······
│ └─ labels
│ └─ ······
├─ train
│ ├─ images
│ │ └─ ······
│ └─ labels
│ └─ ······
├─ valid
│ ├─ images
│ │ └─ ······
│ └─ labels
│ └─ ······
├─ data.yaml
└─ yolov8s.yaml

data.yaml主要是保存训练数据集的目录,类别数,类别名,如图所示:

在这里插入图片描述

模型参数文件yolov8s.yaml: YOLOV8包含5种模型,主要差异还是在:depth_multiple和width_multiple

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值