Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge部分阅读

FedGKT是为了解决资源受限的边缘设备上训练大型CNN的挑战而提出的联邦学习框架。它结合了FedAvg的本地SGD和SL的模型并行,通过交替最小化方法在边缘设备上训练小型CNN,并定期将知识转移到服务器端的大型CNN。FedGKT减少了边缘设备的计算需求,降低了通信带宽,并实现了异步训练,同时保持模型准确性。在CIFAR-10、CIFAR-100和CINIC-10数据集上的实验表明,FedGKT相比FedAvg在计算资源和通信效率上有显著优势。
摘要由CSDN通过智能技术生成

Group Knowledge Transfer: Federated Learning of Large CNNs at the Edge

组知识转移:边缘大型cnn的联合学习

Abstract

通过扩大卷积神经网络(CNN)的大小(例如,宽度,深度等)可以有效地提高模型的准确性。但是,较大的模型尺寸阻碍了在资源受限的边缘设备上进行训练。例如,尽管联邦学习的隐私和机密性使其有很强的实际需求,但却可能会给边缘节点的计算能力带来不适当的负担。为了解决边缘设备资源受限,我们将FL重新构造为名叫FedGKT的组知识转移训练算法。 FedGKT设计了一种交替最小化方法变体,可以在边缘节点上训练小型CNN,并通过知识提炼定期将其知识转移到大型服务器端CNN。 FedGKT将多个优势整合到一个框架中:减少了对边缘计算的需求,降低了大型CNN的通信带宽,并进行了异步训练,所有这些都保持了与FedAvg相当的模型准确性。我们使用三个不同的数据集(CIFAR-10,CIFAR-100和CINIC-10)及其非独立同分布抽样变体,训练基于ResNet-56和ResNet-110设计的CNN。我们的结果表明,与FedAvg相比,FedGKT可以获得与之相当甚至更高的准确性。更重要的是,FedGKT使边缘训练能够负担得起。与使用FedAvg进行边缘训练相比,FedGKT在边缘设备上的计算能力(FLOPs)减少了9到17倍,并且在边缘CNN中需要的参数减少了54到105倍。我们的源代码是 在FedML发布 &#

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在“尾数攻击:是的,你真的可以后门联合学习”这个问题中,尾数攻击是指通过篡改联合学习模型中的尾部数据,来影响模型的训练结果以达到攻击的目的。 联合学习是一种保护用户隐私的分布式学习方法,它允许设备在不共享原始数据的情况下进行模型训练。然而,尾数攻击利用了这种机制的漏洞,通过对局部模型的微小篡改来迫使全局模型在联合学习过程中产生误差。 在尾数攻击中,攻击者可以修改尾部数据的标签、特征或权重,以改变训练模型。这可能导致全局模型在聚合本地模型时出现错误,从而得到错误的预测结果。攻击者可以利用这种攻击方式来干扰或扭曲联合学习任务的结果。 为了解决尾数攻击,可以采取以下措施: 1. 发现和识别攻击:通过监控和分析联合学习模型的训练过程,可以检测到异常的模型行为。例如,检查模型的准确性变化、每个本地模型的贡献以及全局模型与本地模型之间的差异。 2. 降低攻击影响:可以采用如去噪、增加数据量、增强模型鲁棒性等方法来减轻尾数攻击的影响。 3. 鉴别合法参与者:在联合学习任务中应对参与者进行身份认证和授权,并且限制恶意攻击者的参与。这样可以减少尾数攻击的潜在风险。 4. 加强安全机制:引入加密技术和鲁棒算法来保护联合学习过程中的数据和模型,防止未经授权的篡改。 综上所述,尾数攻击是一种可能出现在联合学习中的安全威胁。为了保护联合学习任务的安全性和可靠性,需要采取有效的措施来识别、减轻和预防尾数攻击。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值