Kares中Embeding层详解

keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None)

这是Keras中文文档中的解释,给新手理解,不是我想讲的,有基础的同学可直接看后面

将正整数(索引值)转换为固定尺寸的稠密向量。 例如: [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]

该层只能用作模型中的第一层。

  • input_dim: int > 0。词汇表大小, 即,最大整数 index + 1。
  • output_dim: int >= 0。词向量的维度。
  • embeddings_initializerembeddings 矩阵的初始化方法。
  • embeddings_regularizerembeddings matrix 的正则化方法 。
  • embeddings_constraintembeddings matrix 的约束函数 。
  • mask_zero: 是否把 0 看作为一个应该被遮蔽的特殊的 "padding" 值。 这对于可变长的 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值