keras.layers.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None)
这是Keras中文文档中的解释,给新手理解,不是我想讲的,有基础的同学可直接看后面。
将正整数(索引值)转换为固定尺寸的稠密向量。 例如: [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
该层只能用作模型中的第一层。
- input_dim: int > 0。词汇表大小, 即,最大整数 index + 1。
- output_dim: int >= 0。词向量的维度。
- embeddings_initializer:
embeddings
矩阵的初始化方法。 - embeddings_regularizer:
embeddings
matrix 的正则化方法 。 - embeddings_constraint:
embeddings
matrix 的约束函数 。 - mask_zero: 是否把 0 看作为一个应该被遮蔽的特殊的 "padding" 值。 这对于可变长的