翻译网站去除输入内容的换行符/回车符【操作简单】适用谷歌/百度/有道/DeepL/腾讯/必应等

本文介绍了一种优化翻译网站输入体验的方法,通过JavaScript代码自动去除文本输入中的换行符,适用于百度翻译、有道翻译等多款在线翻译工具。提供V1.0和V2.0两个版本的代码实现,V2.0版本更通用,直接作用于textarea元素,无需特定ID。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

V2.0

通用代码

新增:直接用 getElementsByTagName 检查 textarea 位置,该方法适用于更多网站
亲测适用:百度翻译,有道翻译,谷歌翻译,新秀翻译网站 DeepL腾讯翻译君,必应翻译
如果你想用的翻译网站无效,可使用V1.0方法

英文输入去回车(回车替换为一个空格)

javascript: document.getElementsByTagName('textarea')[0].addEventListener('input',
    function () {
        var txt = "";
        txt = document.getElementsByTagName('textarea')[0].value;
        for (var i = 0; i < txt.length; i++) {
            if (txt.indexOf("\n"))
                txt = txt.replace("\n", " ");
        }
        document.getElementsByTagName('textarea')[0].value = txt;
    }
);

中文输入去回车(删除回车)

javascript: document.getElementsByTagName('textarea')[0].addEventListener('input',
    function () {
        var txt = "";
        txt = document.getElementsByTagName('textarea')[0].value;
        for (var i = 0; i < txt.length; i++) {
            if (txt.indexOf("\n"))
                txt = txt.replace("\n", "");
        }
        document.getElementsByTagName('textarea')[0].value = txt;
    }
);

使用方法

以百度翻译为例:

  1. 复制前面的代码
  2. 随便打开一个浏览器标签,收藏为书签,修改书签名字(请忽略图中的命名。由于代码通用,可命名为翻译网站去回车),把书签地址改成前面复制的代码,保存:
    在这里插入图片描述
  3. 每次先打开百度翻译,再打开刚才新建的书签,再键入需要翻译的内容即可。

V1.0

经 StrongerL 的博客 谷歌翻译自动去除换行 启发,发现只要翻译网站 HTML 代码里 textarea 标签有 id,可复用此代码。

查找id

以谷歌浏览器为例,在翻译网站按下 F12,按图操作(左键单击图标,再单击输入框)在这里插入图片描述
图中鼠标最后所指的即为 id(baidu_translate_input)

翻译网站代码

有道翻译代码:

javascript: document.getElementById('inputOriginal').addEventListener('input',
    function () {
        var txt = "";
        txt = document.getElementById('inputOriginal').value;
        for (var i = 0; i < txt.length; i++) {
            if (txt.indexOf("\n"))
                txt = txt.replace("\n", " ");
        }
        document.getElementById('inputOriginal').value = txt;
    }
);

谷歌翻译代码:

javascript: document.getElementById('source').addEventListener('input',
    function () {
        var txt = "";
        txt = document.getElementById('source').value;
        for (var i = 0; i < txt.length; i++) {
            if (txt.indexOf("\n"))
                txt = txt.replace("\n", " ");
        }
        document.getElementById('source').value = txt;
    }
);

规律已经很明显了,如果你想用的翻译网站也有 id 的话,可以自己改代码。

DQN(Deep Q-Network)是一种使用深度神经网络实现的强化学习算法,用于解决离散动作空间的问题。在PyTorch中实现DQN可以分为以下几个步骤: 1. 定义神经网络:使用PyTorch定义一个包含多个全连接层的神经网络,输入为状态空间的维度,输出为动作空间的维度。 ```python import torch.nn as nn import torch.nn.functional as F class QNet(nn.Module): def __init__(self, state_dim, action_dim): super(QNet, self).__init__() self.fc1 = nn.Linear(state_dim, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, action_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x ``` 2. 定义经验回放缓存:包含多条经验,每条经验包含一个状态、一个动作、一个奖励和下一个状态。 ```python import random class ReplayBuffer(object): def __init__(self, max_size): self.buffer = [] self.max_size = max_size def push(self, state, action, reward, next_state): if len(self.buffer) < self.max_size: self.buffer.append((state, action, reward, next_state)) else: self.buffer.pop(0) self.buffer.append((state, action, reward, next_state)) def sample(self, batch_size): state, action, reward, next_state = zip(*random.sample(self.buffer, batch_size)) return torch.stack(state), torch.tensor(action), torch.tensor(reward), torch.stack(next_state) ``` 3. 定义DQN算法:使用PyTorch定义DQN算法,包含训练和预测两个方法。 ```python class DQN(object): def __init__(self, state_dim, action_dim, gamma, epsilon, lr): self.qnet = QNet(state_dim, action_dim) self.target_qnet = QNet(state_dim, action_dim) self.gamma = gamma self.epsilon = epsilon self.lr = lr self.optimizer = torch.optim.Adam(self.qnet.parameters(), lr=self.lr) self.buffer = ReplayBuffer(100000) self.loss_fn = nn.MSELoss() def act(self, state): if random.random() < self.epsilon: return random.randint(0, action_dim - 1) else: with torch.no_grad(): q_values = self.qnet(state) return q_values.argmax().item() def train(self, batch_size): state, action, reward, next_state = self.buffer.sample(batch_size) q_values = self.qnet(state).gather(1, action.unsqueeze(1)).squeeze(1) target_q_values = self.target_qnet(next_state).max(1)[0].detach() expected_q_values = reward + self.gamma * target_q_values loss = self.loss_fn(q_values, expected_q_values) self.optimizer.zero_grad() loss.backward() self.optimizer.step() def update_target_qnet(self): self.target_qnet.load_state_dict(self.qnet.state_dict()) ``` 4. 训练模型:使用DQN算法进行训练,并更新目标Q网络。 ```python dqn = DQN(state_dim, action_dim, gamma=0.99, epsilon=1.0, lr=0.001) for episode in range(num_episodes): state = env.reset() total_reward = 0 for step in range(max_steps): action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) dqn.buffer.push(torch.tensor(state, dtype=torch.float32), action, reward, torch.tensor(next_state, dtype=torch.float32)) state = next_state total_reward += reward if len(dqn.buffer.buffer) > batch_size: dqn.train(batch_size) if step % target_update == 0: dqn.update_target_qnet() if done: break dqn.epsilon = max(0.01, dqn.epsilon * 0.995) ``` 5. 测试模型:使用训练好的模型进行测试。 ```python total_reward = 0 state = env.reset() while True: action = dqn.act(torch.tensor(state, dtype=torch.float32)) next_state, reward, done, _ = env.step(action) state = next_state total_reward += reward if done: break print("Total reward: {}".format(total_reward)) ``` 以上就是在PyTorch中实现DQN强化学习的基本步骤。需要注意的是,DQN算法中还有很多细节和超参数需要调整,具体实现过程需要根据具体问题进行调整。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值