1.0:PyTorch overview

1.0:PyTorch第一步

PyTorch的简洁设计使得它入门很简单,在深入介绍PyTorch之前,本节将先介绍一些PyTorch的基础知识,使得读者能够对PyTorch有一个大致的了解,并能够用PyTorch搭建一个简单的神经网络。部分内容读者可能暂时不太理解,可先不予以深究,本书的第3章和第4章将会对此进行深入讲解。

本节内容参考了PyTorch官方教程并做了相应的增删修改,使得内容更贴合新版本的PyTorch接口,同时也更适合新手快速入门。另外本书需要读者先掌握基础的Numpy使用,其他相关知识推荐读者参考CS231n的教程。

http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
http://cs231n.github.io/python-numpy-tutorial/

Tensor

Tensor是PyTorch中重要的数据结构,可认为是一个高维数组。它可以是一个数(标量)、一维数组(向量)、二维数组(矩阵)以及更高维的数组。Tensor和Numpy的ndarrays类似,但Tensor可以使用GPU进行加速。Tensor的使用和Numpy及Matlab的接口十分相似,下面通过几个例子来看看Tensor的基本使用。

from __future__ import print_function
import torch as t
t.__version__

#构建 5x3 矩阵,只是分配了空间,未初始化
x = t.Tensor(5, 3)
x = t.Tensor([[1,2],[3,4]])

# 使用[0,1]均匀分布随机初始化二维数组
x = t.rand(5, 3)   #5x3

print(x.size()) # 查看x的形状
x.size()[1], x.size(1) # 查看列的个数, 两种写法等价

torch.Size 是tuple对象的子类,因此它支持tuple的所有操作,如x.size()[0]

y = t.rand(5, 3)
# 加法的第一种写法
x + y
# 加法的第二种写法
t.add(x, y)
# 加法的第三种写法:指定加法结果的输出目标为result
result = t.Tensor(5, 3) # 预先分配空间
t.add(x, y, out=result) # 输入到result
print(result)

print('第一种加法,y的结果')
y.add(x) # 普通加法,不改变y的内容
print(y)

print('第二种加法,y的结果')
y.add_(x) # inplace 加法,y变了
print(y)

注意,函数名后面带下划线**_** 的函数会修改Tensor本身。例如,x.add_(y)x.t_()会改变 x,但x.add(y)x.t()返回一个新的Tensor, 而x不变。

Tensor的选取操作与Numpy类似

x[:, 1]

Tensor还支持很多操作,包括数学运算、线性代数、选择、切片等等,其接口设计与Numpy极为相似。更详细的使用方法,会在第三章系统讲解。

# Tensor和Numpy的数组之间的互操作非常容易且快速。对于Tensor不支持的操作,可以先转为Numpy数组处理,之后再转回Tensor。
import tensor as t
a = t.ones(5) # 新建一个全1的Tensor
b = a.numpy() # Tensor -> Numpy

import numpy as np
a = np.ones(5)
b = t.from_numpy(a) # Numpy->Tensor
print(a)
print(b) 

Tensor和numpy对象共享内存,所以他们之间的转换很快,而且几乎不会消耗什么资源。但这也意味着,如果其中一个变了,另外一个也会随之改变。

#接上
b.add_(1) # 以`_`结尾的函数会修改自身
print(a)
print(b) # Tensor和Numpy共享内存

如果你想获取某一个元素的值,可以使用scalar.item。 直接tensor[idx]得到的还是一个tensor: 一个0-dim 的tensor,一般称为scalar.

#%%
scalar = b[0]
scalar

#%%
scalar.size() #0-dim

#%%
scalar.item() # 使用scalar.item()能从中取出python对象的数值

#%%
tensor = t.tensor([2]) # 注意和scalar的区别
tensor,scalar

#%%
tensor.size(),scalar.size()

只有一个元素的tensor也可以调用tensor.item()

tensor.item(), scalar.item()

此外在pytorch中还有一个和np.array 很类似的接口: torch.tensor, 二者的使用十分类似。

tensor = t.tensor([3,4]) # 新建一个包含 3,4 两个元素的tensor

#%%
scalar = t.tensor(3)
scalar

#%%
old_tensor = tensor
new_tensor = t.tensor(old_tensor)
new_tensor[0] = 1111
old_tensor, new_tensor

#%% [markdown]
# 需要注意的是,`t.tensor()`总是会进行数据拷贝,新tensor和原来的数据不再共享内存。所以如果你想共享内存的话,建议使用`torch.from_numpy()`或者`tensor.detach()`来新建一个tensor, 二者共享内存。

#%%
new_tensor = old_tensor.detach()
new_tensor[0] = 1111
old_tensor, new_tensor

#%% [markdown]
# Tensor可通过`.cuda` 方法转为GPU的Tensor,从而享受GPU带来的加速运算。

在不支持CUDA的机器下,下一步还是在CPU上运行

device = t.device("cuda:0" if t.cuda.is_available() else "cpu")
x = x.to(device)
y = y.to(device)
z = x+y

此外,还可以使用tensor.cuda() 的方式将tensor拷贝到gpu上,但是这种方式不太推荐。
此处可能发现GPU运算的速度并未提升太多,这是因为x和y太小且运算也较为简单,而且将数据从内存转移到显存还需要花费额外的开销。GPU的优势需在大规模数据和复杂运算下才能体现出来。

autograd: 自动微分

深度学习的算法本质上是通过反向传播求导数,而PyTorch的**autograd**模块则实现了此功能。在Tensor上的所有操作,autograd都能为它们自动提供微分,避免了手动计算导数的复杂过程。

autograd.Variable是Autograd中的核心类,它简单封装了Tensor,并支持几乎所有Tensor有的操作。Tensor在被封装为Variable之后,可以调用它的.backward实现反向传播,自动计算所有梯度

# ~~Variable主要包含三个属性。~~
# ~~- `data`:保存Variable所包含的Tensor~~
# ~~- `grad`:保存`data`对应的梯度,`grad`也是个Variable,而不是Tensor,它和`data`的形状一样。~~
# ~~- `grad_fn`:指向一个`Function`对象,这个`Function`用来反向传播计算输入的梯度,具体细节会在下一章讲解。~~

从0.4起, Variable 正式合并入Tensor, Variable本来实现的自动微分功能,Tensor就能支持。读者还是可以使用Variable(tensor), 但是这个操作其实什么都没做。建议读者以后直接使用tensor.*

要想使得Tensor使用autograd功能,只需要设置tensor.requries_grad=True.
为tensor设置 requires_grad 标识,代表着需要求导数,pytorch 会自动调用autograd 记录操作。

x = t.ones(2, 2, requires_grad=True)
# 上一步等价于
# x = t.ones(2,2)
# x.requires_grad = True
y = x.sum()
y.grad_fn
y.backward() # 反向传播,计算梯度
# y = x.sum() = (x[0][0] + x[0][1] + x[1][0] + x[1][1])
# 每个值的梯度都为1
x.grad 

注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以反向传播之前需把梯度清零

# 以下划线结束的函数是inplace操作,会修改自身的值,就像add_
x.grad.data.zero_()
y.backward()
x.grad

神经网络

Autograd实现了反向传播功能,但是直接用来写深度学习的代码在很多情况下还是稍显复杂,torch.nn是专门为神经网络设计的模块化接口。nn构建于 Autograd之上,可用来定义和运行神经网络。nn.Module是nn中最重要的类,可把它看成是一个网络的封装,包含网络各层定义以及forward方法,调用forward(input)方法,可返回前向传播的结果。下面就以最早的卷积神经网络:LeNet为例,来看看如何用nn.Module实现。
官网例程Pytorch关于 LeNet网络。
LeNet网络结构:
tyufty倒淌河

这是一个简单的前馈神经网络(feed-forward network)。它接受一个输入,然后将它送入下一层,一层接一层的传递,最后给出输出。
一个神经网络的典型训练过程如下:
定义包含一些可学习参数(或者叫权重)的神经网络
在输入数据集上迭代
通过网络处理输入
计算损失(输出和正确答案的距离)
将梯度反向传播给网络的参数
更新网络的权重,一般使用一个简单的规则:weight = weight - learning_rate * gradient

这是一个基础的前向传播(feed-forward)网络: 接收输入,经过层层传递运算,得到输出。

1.定义网络

定义网络时,需要继承nn.Module,并实现它的forward方法,把网络中具有可学习参数的层放在构造函数__init__中。如果某一层(如ReLU)不具有可学习的参数,则既可以放在构造函数中,也可以不放,但建议不放在其中,而在forward中使用nn.functional代替。

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        super(Net, self).__init__()	        # 等价于nn.Module.__init__(self)
        
        #卷积层
        self.conv1 = nn.Conv2d(1, 6, 5)   # 卷积层 '1'表示输入图片为单通道, '6'表示输出通道数,'5'表示卷积核为5*5
        self.conv2 = nn.Conv2d(6, 16, 5) 
      
        # 仿射层/全连接层,y = Wx + b
        '''仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间'''
        self.fc1   = nn.Linear(16*5*5, 120)     #Linear(输入层参数,输出层参数)
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)

    def forward(self, x): 
        # 卷积 -> 激活 -> 池化 
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) #2X2 Max Pooling
        x = F.max_pool2d(F.relu(self.conv2(x)), 2) 
        x = x.view(x.size()[0], -1) 	   # reshape,‘-1’表示自适应
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)        
        return x

net = Net()
print(net)

只要在nn.Module的子类中定义了forward函数,backward函数就会自动被实现(利用autograd)。在forward 函数中可使用任何tensor支持的函数,还可以使用if、for循环、print、log等Python语法,写法和标准的Python写法一致。

网络的可学习参数通过net.parameters()返回,net.named_parameters可同时返回可学习的参数及名称。

params = list(net.parameters())
print(len(params))

for name,parameters in net.named_parameters():
    print(name,':',parameters.size())

forward函数的输入和输出都是Tensor。

input = t.randn(1, 1, 32, 32)
out = net(input)
#out.size()

net.zero_grad() # 所有参数的梯度清零
out.backward(t.ones(1,10)) # 反向传播

需要注意的是,torch.nn只支持mini-batches,不支持一次只输入一个样本,即一次必须是一个batch。但如果只想输入一个样本,则用 input.unsqueeze(0)将batch_size设为1。例如 nn.Conv2d 输入必须是4维的。
形如: n S a m p l e s × n C h a n n e l s × H e i g h t × W i d t h nSamples \times nChannels \times Height \times Width nSamples×nChannels×Height×Width。可将nSample设为1,即 1 × n C h a n n e l s × H e i g h t × W i d t h 1 \times nChannels \times Height \times Width 1×nChannels×Height×Width

2.损失函数

nn实现了神经网络中大多数的损失函数,例如nn.MSELoss用来计算均方误差,nn.CrossEntropyLoss用来计算交叉熵损失。

output = net(input)
target = t.arange(0,10).view(1,10) 
criterion = nn.MSELoss()
loss = criterion(output, target)
loss 		# loss是个scalar(标量)

#如果对loss进行反向传播溯源(使用gradfn属性),可看到它的计算图如下:

# ```
# input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d  
#       -> view -> linear -> relu -> linear -> relu -> linear 
#       -> MSELoss
#       -> loss
# ```

当调用loss.backward()时,该图会动态生成并自动微分,也即会自动计算图中参数(Parameter)的导数。

#运行.backward,观察调用之前和调用之后的grad

net.zero_grad() # 把net中所有可学习参数的梯度清零
print('反向传播之前 conv1.bias的梯度')
print(net.conv1.bias.grad)
loss.backward() #这里可能会报错,只能有一次backward()
print('反向传播之后 conv1.bias的梯度')
print(net.conv1.bias.grad)
3.优化器

在反向传播计算完所有参数的梯度后,还需要使用优化方法来更新网络的权重和参数,例如随机梯度下降法(SGD)的更新策略如下:

# ```
# weight = weight - learning_rate * gradient
# ```
# 
# 手动实现如下:
# 
# ```python
# learning_rate = 0.01
# for f in net.parameters(): #同时对所有参数进行优化
#     f.data.sub_(f.grad.data * learning_rate)# inplace 减法
# ```

torch.optim中实现了深度学习中绝大多数的优化方法,例如RMSProp、Adam、SGD等,更便于使用,因此大多数时候并不需要手动写上述代码。

import torch.optim as optim
#新建一个优化器,指定要调整的参数和学习率
optimizer = optim.SGD(net.parameters(), lr = 0.01)

在训练过程中
#先梯度清零(与net.zero_grad()效果一样)

optimizer.zero_grad() 

计算损失

output = net(input)
loss = criterion(output, target)

反向传播

loss.backward()

#更新参数

optimizer.step()
4.数据加载与预处理

在深度学习中数据加载及预处理是非常复杂繁琐的,但PyTorch提供了一些可极大简化和加快数据处理流程的工具。同时,对于常用的数据集,PyTorch也提供了封装好的接口供用户快速调用,这些数据集主要保存在torchvison中。

torchvision实现了常用的图像数据加载功能,例如Imagenet、CIFAR10、MNIST等,以及常用的数据转换操作,这极大地方便了数据加载,并且代码具有可重用性。

小试牛刀:CIFAR-10分类

#下面我们来尝试实现对CIFAR-10数据集的分类,步骤如下:

  1. 使用torchvision加载并预处理CIFAR-10数据集
  2. 定义网络
  3. 定义损失函数和优化器
  4. 训练网络并更新网络参数
  5. 测试网络

CIFAR-10数据加载及预处理

CIFAR-10]是一个常用的彩色图片数据集,它有10个类别: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。每张图片都是 3 × 32 × 32 3\times32\times32 3×32×32,也即3-通道彩色图片,分辨率为 32 × 32 32\times32 32×32
数据集官网:CIFAR-10

import torchvision as tv
import torchvision.transforms as transforms
from torchvision.transforms import ToPILImage
show = ToPILImage() # 可以把Tensor转成Image,方便可视化

第一次运行程序torchvision会自动下载CIFAR-10数据集,
大约100M,需花费一定的时间,
如果已经下载有CIFAR-10,可通过root参数指定

定义对数据的预处理
transform = transforms.Compose([
        transforms.ToTensor(), # 转为Tensor
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
                             ])
训练集
trainset = tv.datasets.CIFAR10(
                    root='/home/cy/tmp/data/', 
                    train=True, 
                    download=True,
                    transform=transform)

trainloader = t.utils.data.DataLoader(
                    trainset, 
                    batch_size=4,
                    shuffle=True, 
                    num_workers=2)

‘’‘dataset:参数说明: -
root : cifar-10-batches-py 的根目录 -
train : True =训练集, False = 测试集
download : True = 从互联上下载数据,并将其放在root目录下。如果数据集已经下载,什么都不干。 ‘’’

‘’’ DataLoader:
class torch.utils.data.DataLoader( dataset,batch_size=1, shuffle=False, sampler=None, num_workers=0, collate_fn=(function default_collate), pin_memory=False, drop_last=False)
参数:
dataset (Dataset) – 加载数据的数据集。
batch_size (int,optional) – 每个batch加载多少个样本(默认: 1)。
shuffle (bool, optional) – 设置为True时会在每个epoch重新打乱数据(默认: False).
sampler (Sampler, optional) –定义从数据集中提取样本的策略。如果指定,则忽略shuffle参数。
num_workers (int, optional) –用多少个子进程加载数据。0表示数据将在主进程中加载(默认: 0)
collate_fn (callable, optional) –
pin_memory (bool, optional) –
drop_last (bool, optional) – 如果数据集大小不能被batch size整除,则设置为True后可删除最后一个不完整的batch。 如果设为False并且数据集的大小不能被batch size整除,则最后一个batch将更小。(默认: False) ‘’’

测试集
testset = tv.datasets.CIFAR10(
                    '/home/cy/tmp/data/',
                    train=False, 
                    download=True, 
                    transform=transform)

testloader = t.utils.data.DataLoader(
                    testset,
                    batch_size=4, 
                    shuffle=False,
                    num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

Dataset对象是一个数据集,可以按下标访问,返回形如(data, label)的数据。

(data, label) = trainset[100]
print(classes[label])

(data + 1) / 2是为了还原被归一化的数据

show((data + 1) / 2).resize((100, 100))

Dataloader是一个可迭代的对象,它将dataset返回的每一条数据拼接成一个batch,并提供多线程加速优化和数据打乱等操作。当程序对dataset的所有数据遍历完一遍之后,相应的对Dataloader也完成了一次迭代。

dataiter = iter(trainloader)
images, labels = dataiter.next() # 返回4张图片及标签
print(' '.join('%11s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid((images+1)/2)).resize((400,100))
定义网络

拷贝上面的LeNet网络,修改self.conv1第一个参数为3通道,因CIFAR-10是3通道彩图。

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5) 
        self.conv2 = nn.Conv2d(6, 16, 5)  
        self.fc1   = nn.Linear(16*5*5, 120)  
        self.fc2   = nn.Linear(120, 84)
        self.fc3   = nn.Linear(84, 10)

    def forward(self, x): 
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2)) 
        x = F.max_pool2d(F.relu(self.conv2(x)), 2) 
        x = x.view(x.size()[0], -1) 
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)        
        return x

net = Net()
print(net)
定义损失函数和优化器(loss和optimizer)
from torch import optim
criterion = nn.CrossEntropyLoss() # 交叉熵损失函数
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
训练网络

所有网络的训练流程都是类似的,不断地执行如下流程:

  • 输入数据
  • 前向传播+反向传播
  • 更新参数

t.set_num_threads(8) for epoch in range(2):

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        
        # 输入数据
        inputs, labels = data
        
        # 梯度清零
        optimizer.zero_grad()
        
        # forward + backward 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()   
        
        # 更新参数 
        optimizer.step()
        
        # 打印log信息
        # loss 是一个scalar,需要使用loss.item()来获取数值,不能使用loss[0]
        running_loss += loss.item()
        if i % 2000 == 1999: # 每2000个batch打印一下训练状态
            print('[%d, %5d] loss: %.3f'                   % (epoch+1, i+1, running_loss / 2000))
            running_loss = 0.0
    print('Finished Training')

#此处仅训练了2个epoch(遍历完一遍数据集称为一个epoch),来看看网络有没有效果。将测试图片输入到网络中,计算它的label,然后与实际的label进行比较。

dataiter = iter(testloader)
images, labels = dataiter.next() # 一个batch返回4张图片
print('实际的label: ', ' '.join(            '%08s'%classes[labels[j]] for j in range(4)))
show(tv.utils.make_grid(images / 2 - 0.5)).resize((400,100))
接着计算网络预测的label:

计算图片在每个类别上的分数

outputs = net(images)

得分最高的那个类

_,predicted = t.max(outputs.data, 1)
print('预测结果: ', ' '.join('%5s'            % classes[predicted[j]] for j in range(4)))

已经可以看出效果,准确率50%,但这只是一部分的图片,再来看看在整个测试集上的效果。

correct = 0 # 预测正确的图片数
total = 0 # 总共的图片数

由于测试的时候不需要求导,可以暂时关闭autograd,提高速度,节约内存

with t.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = t.max(outputs, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum()

print('10000张测试集中的准确率为: %d %%' % (100 * correct / total))

训练的准确率远比随机猜测(准确率10%)好,证明网络确实学到了东西。

在GPU训练

就像之前把Tensor从CPU转到GPU一样,模型也可以类似地从CPU转到GPU。

如果我们有cuda可用的话,让我们首先定义第一个设备为可见cuda设备:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Assuming that we are on a CUDA machine, this should print a CUDA device:

print(device)

输出:cuda:0(没有GPU~)

本节的其余部分假设device是CUDA。
然后这些方法将递归遍历所有模块,并将它们的参数和缓冲区转换为CUDA张量:

device = t.device("cuda:0" if t.cuda.is_available() else "cpu")

net.to(device)
images = images.to(device)
labels = labels.to(device)
output = net(images)
loss= criterion(output,labels)

loss

如果发现在GPU上并没有比CPU提速很多,实际上是因为网络比较小,GPU没有完全发挥自己的真正实力。
higher的加速:
多GPU加速

4.总结:

对PyTorch的基础介绍至此结束。总结一下,本节主要包含以下内容。
1. Tensor: 类似Numpy数组的数据结构,与Numpy接口类似,可方便地互相转换。
2. autograd/: 为tensor提供自动求导功能。
3. nn: 专门为神经网络设计的接口,提供了很多有用的功能(神经网络层,损失函数,优化器等)。
4. 神经网络训练: 以CIFAR-10分类为例演示了神经网络的训练流程,包括数据加载、网络搭建、训练及测试。

5.

通过本节的学习,相信读者可以体会出PyTorch具有接口简单、使用灵活等特点。从下一章开始,本书将深入系统地讲解PyTorch的各部分知识。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值