第三章考题
- 求极限
- 函数的极值和最值,曲线的凹凸性及其拐点
- 曲线的渐近线
- 方程的根
- 不等式的证明
- 中值定理的证明题
微分中值定理
定理1:费马引理:
如果函数在一点可导,并且在该点取得极值,则导数为0
根据图像比较容易得出结论
定理2:罗尔定理:
如果函数在闭区间连续,开区间可导
两端点值相等,则可以证明至少存在一点导数为0
证明:
方法一,几何明显
方法二,一定存在最小值m,最大值M
- m==M,则可以证明导数处处为0
- m < M,又根据两端点值相等,则至少有一个值是在区间内部,且为极值点,所以可以证明导数为0
定理3:拉格朗日中值定理:
上述条件下,一定存在一点导数值等于两点连线的斜率
定理4:柯西中值定理
存在两个函数满足上述条件,则一定存在一点的两个函数的导数值为两点函数的差值
证明:可以将y,x当做对t的参数方程,按照拉格朗日进行求导
三个微分中值定理
- 意义:建立函数和导数之间的关系
- 罗尔定理是拉格朗日定理的特例,拉格朗日是柯西中值定理的特例