第三章 微分中值定理及其应用

本文详细探讨了微分中值定理,包括费马引理、罗尔定理、拉格朗日中值定理和柯西中值定理。此外,讲解了泰勒公式及其余项的区别,以及导数在极值、凹凸性、拐点、渐近线等方面的运用。同时,阐述了如何判断和求解函数的极值、最值以及证明不等式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第三章考题

  1. 求极限
  2. 函数的极值和最值,曲线的凹凸性及其拐点
  3. 曲线的渐近线
  4. 方程的根
  5. 不等式的证明
  6. 中值定理的证明题

微分中值定理

定理1:费马引理:

如果函数在一点可导,并且在该点取得极值,则导数为0

根据图像比较容易得出结论

定理2:罗尔定理:

如果函数在闭区间连续,开区间可导

两端点值相等,则可以证明至少存在一点导数为0

证明:

方法一,几何明显

方法二,一定存在最小值m,最大值M

  1. m==M,则可以证明导数处处为0
  2. m < M,又根据两端点值相等,则至少有一个值是在区间内部,且为极值点,所以可以证明导数为0
定理3:拉格朗日中值定理:

上述条件下,一定存在一点导数值等于两点连线的斜率

定理4:柯西中值定理

存在两个函数满足上述条件,则一定存在一点的两个函数的导数值为两点函数的差值

证明:可以将y,x当做对t的参数方程,按照拉格朗日进行求导

三个微分中值定理
  1. 意义:建立函数和导数之间的关系
  2. 罗尔定理是拉格朗日定理的特例,拉格朗日是柯西中值定理的特例
### 微分中值定理的Python实现 微分中值定理指出,在满足一定条件下的一元实函数$f(x)$上,至少存在一点$c$位于区间$(a,b)$内,使得该点处导数等于连接端点线段斜率。具体表达式为: $$ f'(c) = \frac{f(b)-f(a)}{b-a} $$ 为了通过Python验证这一结论,可以编写如下代码来寻找符合条件的$c$值[^2]。 #### 定义目标函数及其导数 首先定义一个具体的连续可导的目标函数以及其对应的解析形式的第一阶导数作为比较标准。 ```python import numpy as np from scipy.misc import derivative def func(x): """Define the function you want to test.""" return x ** 3 - 5 * x + 8 def deriv_func(x): """Analytical first-order derivative of `func`""" return 3 * x ** 2 - 5 ``` #### 寻找满足条件的中间点$c$ 接着利用数值方法求解给定闭区间的平均变化率,并尝试找到使导数值与此相等的位置。 ```python def find_mvt_point(func, a, b, tol=1e-6): """ Find point c that satisfies Mean Value Theorem. Parameters: func : callable Function which MVT applies on. a, b : float Interval endpoints where a < b. tol : float Tolerance for stopping criterion. Returns: mvt_c : float or None Point satisfying MVT condition within tolerance; returns None if no such point found numerically. """ avg_slope = (func(b) - func(a)) / (b - a) def diff_from_avg_slope(c): return abs(derivative(func, c, dx=1e-9) - avg_slope) # Simple binary search approach over interval [a, b] low, high = min(a, b), max(a, b) while high - low > tol: mid = (low + high) / 2.0 error_at_mid = diff_from_avg_slope(mid) if error_at_mid < tol: return mid elif derivative(func, mid, dx=1e-9) >= avg_slope: high = mid else: low = mid return None ``` 最后调用上述定义的方法并打印结果: ```python if __name__ == "__main__": a, b = -2., 4. mvt_c = find_mvt_point(func, a, b) print(f"Mean value theorem: there exists c so that " f"f'(c)=(f({b})-f({a}))/(b-{a}), with c≈{mvt_c:.7f}") if mvt_c is not None: computed_derivative = derivative(func, mvt_c, dx=1e-9) analytical_derivative = deriv_func(mvt_c) print("\nVerification:") print(f"At c={mvt_c:.7f}, numerical derivative ≈ {computed_derivative:.7f}") print(f"Analytically derived f'({mvt_c:.7f}) = {analytical_derivative:.7f}") ``` 这段程序实现了对于特定函数在指定范围内的拉格朗日中值定理验证过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值