第三章 微分中值定理及其应用

本文详细探讨了微分中值定理,包括费马引理、罗尔定理、拉格朗日中值定理和柯西中值定理。此外,讲解了泰勒公式及其余项的区别,以及导数在极值、凹凸性、拐点、渐近线等方面的运用。同时,阐述了如何判断和求解函数的极值、最值以及证明不等式。
摘要由CSDN通过智能技术生成

第三章考题

  1. 求极限
  2. 函数的极值和最值,曲线的凹凸性及其拐点
  3. 曲线的渐近线
  4. 方程的根
  5. 不等式的证明
  6. 中值定理的证明题

微分中值定理

定理1:费马引理:

如果函数在一点可导,并且在该点取得极值,则导数为0

根据图像比较容易得出结论

定理2:罗尔定理:

如果函数在闭区间连续,开区间可导

两端点值相等,则可以证明至少存在一点导数为0

证明:

方法一,几何明显

方法二,一定存在最小值m,最大值M

  1. m==M,则可以证明导数处处为0
  2. m < M,又根据两端点值相等,则至少有一个值是在区间内部,且为极值点,所以可以证明导数为0
定理3:拉格朗日中值定理:

上述条件下,一定存在一点导数值等于两点连线的斜率

定理4:柯西中值定理

存在两个函数满足上述条件,则一定存在一点的两个函数的导数值为两点函数的差值

证明:可以将y,x当做对t的参数方程,按照拉格朗日进行求导

三个微分中值定理
  1. 意义:建立函数和导数之间的关系
  2. 罗尔定理是拉格朗日定理的特例,拉格朗日是柯西中值定理的特例
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值