考试概要
一、极限的概念
1、数列极限的概念

(1)ε是用来限制,数列极限与常数的接近程度的,N是表示数列N项以后的极限。
(2)几何意义是,任取N的ε邻域内,都找到N,在其以后的所有项的值都落在A的ε领域里面。
(3)极限与前有限项无关,在利用单调有界准则的时候,可以取后面的项单调有界的规律来求数列极限。
(4)数列极限存在,可以推导部分列极限存在。奇偶列存在并且相等才能推导出数列极限存在。

2、函数极限
2.1、当自变量趋向于无穷大的时候

2.2、自变量趋向于有限值的极限
(1)ε是用来逼近函数值和常数的接近程度,δ用来描述是在x0的去心邻域内
(2)几何意义,在任意A的领域内,都可以找到x0的领域内都落在A的领域内。
(3)极限的要求:x -> x0,但x不能等于x0

需要分左右极限的三种情况

二、极限的性质
1、有界性

N项以后都落在A的领域内,N项以前是有限项,有限项一定有最大最小值,所以{xn}一定有界。
收敛一定有界,有界不一定收敛。

函数极限,只能管该点领域内的值。
极限存在 -> 局部有界。局部有界不能推导极限存在。
2、保号性
数列的保号性:
极限值保数列是严格大于,数列值保极限值是大于等于。

函数极限的保号性:
和数列极限的保号性类似,数列保的是当N充分大,函数极限保的是在x0的去心邻域内。
3、极限值与无穷小的关系
三、极限的存在准则
1)夹逼准则
n项和求极限使用夹逼准则。

2)单调有界准则(数列极限)
在求递推关系的数列时候,需要证明单调有界,极限存在。

四、无穷小
1)无穷小的概念
2)无穷小的比较

3)无穷小量的性质
五、无穷大
1)无穷大量的概念
2)无穷大量的比较

3)无穷大量的性质
4)无穷大量和无界变量的关系
常见题型
题型一、极限的概念性质和存在准则(选择题)
题型二、求极限
方法一、利用基本极限求极限

方法二、利用等价无穷小进行替换


方法三、利用有理运算法则求极限

常用结论
在求极限当中,非0常数因子可以先求出来。
1、分母趋向于0,分子也趋向于0。
2、分子趋向于0,极限非0,分母也趋向于0。
证明采用极限的有理运算法则。
方法四、利用洛必达法则求极限
方法五、利用泰勒公式求极限(皮亚诺余项求极限)

本文深入解析了数列极限和函数极限的概念,包括ε-N定义、几何意义,以及极限的性质如有界性和保号性。讲解了极限存在的准则,如夹逼准则和单调有界准则,并探讨了无穷小和无穷大的概念及比较。提供了解题技巧,如基本极限、等价无穷小替换等,以及洛必达法则的应用。最后涉及了常见题型和实用结论。
878

被折叠的 条评论
为什么被折叠?



