1 损失函数
1.1 什么是损失函数
损失函数(Loss Function)又叫做误差函数,用来衡量算法的运行情况,估量模型的预测值与真实值的不一致程度,是一个非负实值函数,通常使用$
L(Y, f(x))$来表示。损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
1.2 常见的损失函数
机器学习通过对算法中的目标函数进行不断求解优化,得到最终想要的结果。分类和回归问题中,通常使用损失函数或代价函数作为目标函数。
损失函数用来评价预测值和真实值不一样的程度。通常损失函数越好,模型的性能也越好。
损失函数可分为经验风险损失函数和结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是在经验风险损失函数上加上正则项。
下面介绍常用的损失函数:
(1)0-1损失函数
如果预测值和目标值相等,值为0,如果不相等,值为1。
L
(
Y
,
f
(
x
)
)
=
{
1
,
Y
≠
f
(
x
)
0
,
Y
=
f
(
x
)
L(Y, f(x)) = \begin{cases} 1,& Y\ne f(x)\\ 0,& Y = f(x) \end{cases}
L(Y,f(x))={1,0,Y=f(x)Y=f(x)
一般的在实际使用中,相等的条件过于严格,可适当放宽条件:
L ( Y , f ( x ) ) = { 1 , ∣ Y − f ( x ) ∣ ⩾ T 0 , ∣ Y − f ( x ) ∣ < T L(Y, f(x)) = \begin{cases} 1,& |Y-f(x)|\geqslant T\\ 0,& |Y-f(x)|< T \end{cases} L(Y,f(x))={1,0,∣Y−f(x)∣⩾T∣Y−f(x)∣<T
(2)绝对值损失函数
和0-1损失函数相似,绝对值损失函数表示为:
L
(
Y
,
f
(
x
)
)
=
∣
Y
−
f
(
x
)
∣
L(Y, f(x)) = |Y-f(x)|
L(Y,f(x))=∣Y−f(x)∣
(3)平方损失函数
L
(
Y
,
f
(
x
)
)
=
∑
N
(
Y
−
f
(
x
)
)
2
L(Y, f(x)) = \sum_N{(Y-f(x))}^2
L(Y,f(x))=N∑(Y−f(x))2
这点可从最小二乘法和欧几里得距离角度理解。最小二乘法的原理是,最优拟合曲线应该使所有点到回归直线的距离和最小。
(4)对数损失函数
L
(
Y
,
P
(
Y
∣
X
)
)
=
−
log
P
(
Y
∣
X
)
=
−
1
N
∑
i
=
1
N
∑
j
=
1
M
y
i
j
l
o
g
(
p
i
j
)
L(Y, P(Y|X)) = -\log{P(Y|X)}=-\frac{1}{N}\sum_{i=1}^N\sum_{j=1}^M y_{ij}log(p_{ij})
L(Y,P(Y∣X))=−logP(Y∣X)=−N1i=1∑Nj=1∑Myijlog(pij)
其中, Y 为输出变量, X为输入变量, L 为损失函数. N为输入样本量, M为可能的类别数, y i j y_{ij} yij 是一个二值指标, 表示类别 j 是否是输入实例 xi 的真实类别. p i j p_{ij} pij 为模型或分类器预测输入实例 xi 属于类别 j 的概率.
常见的逻辑回归使用的就是对数损失函数,有很多人认为逻辑回归的损失函数是平方损失,其实不然。逻辑回归它假设样本服从伯努利分布(0-1分布),进而求得满足该分布的似然函数,接着取对数求极值等。逻辑回归推导出的经验风险函数是最小化负的似然函数,从损失函数的角度看,就是对数损失函数。形式上等价于二分类的交叉熵损失函数。
(6)指数损失函数
指数损失函数的标准形式为:
L
(
Y
,
f
(
x
)
)
=
exp
(
−
Y
f
(
x
)
)
L(Y, f(x)) = \exp(-Yf(x))
L(Y,f(x))=exp(−Yf(x))
例如AdaBoost就是以指数损失函数为损失函数。
(7)Hinge损失函数
Hinge损失函数的标准形式如下:
L
(
y
)
=
max
(
0
,
1
−
t
y
)
L(y) = \max{(0, 1-ty)}
L(y)=max(0,1−ty)
统一的形式:
L
(
Y
,
f
(
x
)
)
=
max
(
0
,
Y
f
(
x
)
)
L(Y, f(x)) = \max{(0, Yf(x))}
L(Y,f(x))=max(0,Yf(x))
其中y是预测值,范围为(-1,1),t为目标值,其为-1或1。
在线性支持向量机中,最优化问题可等价于
w , b min ∑ i = 1 N ( 1 − y i ( w x i + b ) ) + λ ∥ w ∥ 2 \underset{\min}{w,b}\sum_{i=1}^N (1-y_i(wx_i+b))+\lambda\Vert w\Vert ^2 minw,bi=1∑N(1−yi(wxi+b))+λ∥w∥2
上式相似于下式
1 m ∑ i = 1 N l ( w x i + b y i ) + ∥ w ∥ 2 \frac{1}{m}\sum_{i=1}^{N}l(wx_i+by_i) + \Vert w\Vert ^2 m1i=1∑Nl(wxi+byi)+∥w∥2
其中 l ( w x i + b y i ) l(wx_i+by_i) l(wxi+byi)是Hinge损失函数, ∥ w ∥ 2 \Vert w\Vert ^2 ∥w∥2可看做为正则化项。
1.3 逻辑回归为什么使用对数损失函数
假设逻辑回归模型
P
(
y
=
1
∣
x
;
θ
)
=
1
1
+
e
−
θ
T
x
P(y=1|x;\theta)=\frac{1}{1+e^{-\theta^{T}x}}
P(y=1∣x;θ)=1+e−θTx1
假设逻辑回归模型的概率分布是伯努利分布,其概率质量函数为:
P
(
X
=
n
)
=
{
1
−
p
,
n
=
0
p
,
n
=
1
P(X=n)= \begin{cases} 1-p, n=0\\ p,n=1 \end{cases}
P(X=n)={1−p,n=0p,n=1
其似然函数为:
L
(
θ
)
=
∏
i
=
1
m
P
(
y
=
1
∣
x
i
)
y
i
P
(
y
=
0
∣
x
i
)
1
−
y
i
L(\theta)=\prod_{i=1}^{m} P(y=1|x_i)^{y_i}P(y=0|x_i)^{1-y_i}
L(θ)=i=1∏mP(y=1∣xi)yiP(y=0∣xi)1−yi
对数似然函数为:
ln
L
(
θ
)
=
∑
i
=
1
m
[
y
i
ln
P
(
y
=
1
∣
x
i
)
+
(
1
−
y
i
)
ln
P
(
y
=
0
∣
x
i
)
]
=
∑
i
=
1
m
[
y
i
ln
P
(
y
=
1
∣
x
i
)
+
(
1
−
y
i
)
ln
(
1
−
P
(
y
=
1
∣
x
i
)
)
]
\ln L(\theta)=\sum_{i=1}^{m}[y_i\ln{P(y=1|x_i)}+(1-y_i)\ln{P(y=0|x_i)}]\\ =\sum_{i=1}^m[y_i\ln{P(y=1|x_i)}+(1-y_i)\ln(1-P(y=1|x_i))]
lnL(θ)=i=1∑m[yilnP(y=1∣xi)+(1−yi)lnP(y=0∣xi)]=i=1∑m[yilnP(y=1∣xi)+(1−yi)ln(1−P(y=1∣xi))]
对数函数在单个数据点上的定义为:
c
o
s
t
(
y
,
p
(
y
∣
x
)
)
=
−
y
ln
p
(
y
∣
x
)
−
(
1
−
y
)
ln
(
1
−
p
(
y
∣
x
)
)
cost(y,p(y|x))=-y\ln{p(y|x)-(1-y)\ln(1-p(y|x))}
cost(y,p(y∣x))=−ylnp(y∣x)−(1−y)ln(1−p(y∣x))
则全局样本损失函数为:
c
o
s
t
(
y
,
p
(
y
∣
x
)
)
=
−
∑
i
=
1
m
[
y
i
ln
p
(
y
i
∣
x
i
)
+
(
1
−
y
i
)
ln
(
1
−
p
(
y
i
∣
x
i
)
)
]
cost(y,p(y|x)) = -\sum_{i=1}^m[y_i\ln p(y_i|x_i)+(1-y_i)\ln(1-p(y_i|x_i))]
cost(y,p(y∣x))=−i=1∑m[yilnp(yi∣xi)+(1−yi)ln(1−p(yi∣xi))]
由此可看出,对数损失函数与极大似然估计的对数似然函数本质上是相同的。所以逻辑回归直接采用对数损失函数。
1.4 对数损失函数是如何度量损失的
例如,在高斯分布中,我们需要确定均值和标准差。
如何确定这两个参数?最大似然估计是比较常用的方法。最大似然的目标是找到一些参数值,这些参数值对应的分布可以最大化观测到数据的概率。
因为需要计算观测到所有数据的全概率,即所有观测到的数据点的联合概率。现考虑如下简化情况:
(1)假设观测到每个数据点的概率和其他数据点的概率是独立的。
(2)取自然对数。
假设观测到单个数据点
x
i
(
i
=
1
,
2
,
.
.
.
n
)
x_i(i=1,2,...n)
xi(i=1,2,...n)的概率为:
P
(
x
i
;
μ
,
σ
)
=
1
σ
2
π
exp
(
−
(
x
i
−
μ
)
2
2
σ
2
)
P(x_i;\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}\exp \left( - \frac{(x_i-\mu)^2}{2\sigma^2} \right)
P(xi;μ,σ)=σ2π1exp(−2σ2(xi−μ)2)
(3)其联合概率为:
P
(
x
1
,
x
2
,
.
.
.
,
x
n
;
μ
,
σ
)
=
1
σ
2
π
exp
(
−
(
x
1
−
μ
)
2
2
σ
2
)
×
1
σ
2
π
exp
(
−
(
x
2
−
μ
)
2
2
σ
2
)
×
.
.
.
×
1
σ
2
π
exp
(
−
(
x
n
−
μ
)
2
2
σ
2
)
P(x_1,x_2,...,x_n;\mu,\sigma)=\frac{1}{\sigma \sqrt{2\pi}}\exp \left( - \frac{(x_1-\mu)^2}{2\sigma^2} \right) \\ \times \frac{1}{\sigma \sqrt{2\pi}}\exp \left( - \frac{(x_2-\mu)^2}{2\sigma^2} \right) \times ... \times \frac{1}{\sigma \sqrt{2\pi}}\exp \left( - \frac{(x_n-\mu)^2}{2\sigma^2} \right)
P(x1,x2,...,xn;μ,σ)=σ2π1exp(−2σ2(x1−μ)2)×σ2π1exp(−2σ2(x2−μ)2)×...×σ2π1exp(−2σ2(xn−μ)2)
对上式取自然对数,可得:
ln
(
P
(
x
1
,
x
2
,
.
.
.
x
n
;
μ
,
σ
)
)
=
ln
(
1
σ
2
π
)
−
(
x
1
−
μ
)
2
2
σ
2
+
ln
(
1
σ
2
π
)
−
(
x
2
−
μ
)
2
2
σ
2
+
.
.
.
+
ln
(
1
σ
2
π
)
−
(
x
n
−
μ
)
2
2
σ
2
\ln(P(x_1,x_2,...x_n;\mu,\sigma))= \ln \left(\frac{1}{\sigma \sqrt{2\pi}} \right) - \frac{(x_1-\mu)^2}{2\sigma^2} \\ + \ln \left( \frac{1}{\sigma \sqrt{2\pi}} \right) - \frac{(x_2-\mu)^2}{2\sigma^2} +...+ \ln \left( \frac{1}{\sigma \sqrt{2\pi}} \right) - \frac{(x_n-\mu)^2}{2\sigma^2}
ln(P(x1,x2,...xn;μ,σ))=ln(σ2π1)−2σ2(x1−μ)2+ln(σ2π1)−2σ2(x2−μ)2+...+ln(σ2π1)−2σ2(xn−μ)2
根据对数定律,上式可以化简为:
ln
(
P
(
x
1
,
x
2
,
.
.
.
x
n
;
μ
,
σ
)
)
=
−
n
ln
(
σ
)
−
n
2
ln
(
2
π
)
−
1
2
σ
2
[
(
x
1
−
μ
)
2
+
(
x
2
−
μ
)
2
+
.
.
.
+
(
x
n
−
μ
)
2
]
\ln(P(x_1,x_2,...x_n;\mu,\sigma))=-n\ln(\sigma)-\frac{n}{2} \ln(2\pi)\\ -\frac{1}{2\sigma^2}[(x_1-\mu)^2+(x_2-\mu)^2+...+(x_n-\mu)^2]
ln(P(x1,x2,...xn;μ,σ))=−nln(σ)−2nln(2π)−2σ21[(x1−μ)2+(x2−μ)2+...+(xn−μ)2]
然后求导为:
∂
ln
(
P
(
x
1
,
x
2
,
.
.
.
,
x
n
;
μ
,
σ
)
)
∂
μ
=
n
σ
2
[
μ
−
(
x
1
+
x
2
+
.
.
.
+
x
n
)
]
\frac{\partial\ln(P(x_1,x_2,...,x_n;\mu,\sigma))}{\partial\mu}= \frac{n}{\sigma^2}[\mu - (x_1+x_2+...+x_n)]
∂μ∂ln(P(x1,x2,...,xn;μ,σ))=σ2n[μ−(x1+x2+...+xn)]
上式左半部分为对数损失函数。损失函数越小越好,因此我们令等式左半的对数损失函数为0,可得:
μ
=
x
1
+
x
2
+
.
.
.
+
x
n
n
\mu=\frac{x_1+x_2+...+x_n}{n}
μ=nx1+x2+...+xn
同理,可计算
σ
\sigma
σ。