Python中使用,YOLOv5实现视觉识别螺丝

本文介绍了一次使用YOLOv5进行螺丝识别的实际操作经历,包括遇到的版本兼容问题及解决办法。在仅使用CPU的情况下,经过200次训练后实现了对数据集中图像的有效识别,并展示了实时摄像头画面的识别效果。
部署运行你感兴趣的模型镜像

实现过程中遍地是坑..各种报错...还好最终实现...

因为安装的某一些库的版本,不兼容的问题,导致无法使用GPU计算,所以视频中演示的效果,采用的是Cpu计算的,喂投数据集图像,41张,一共训练了200次,破本训练还是满慢的。。。

图像识别效果 ,特别注明,此图是存在数据集中的(主要是懒的拍新图了)..

下面视频中的,是实时摄像头画面识别。

黑色的是黑色的鼠标垫,并非刻意处理成 黑色的效果。。

视觉识别Python中,使用YOLOv5实现识别螺丝效果

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值