迟滞比较器/施密特触发器

功能

从下面原理图像看来,只有在达到上下阈值才会出现输出电平的转换,这样防止信号的杂波跳变。而且每次的阈值是随着输出而变化的,当输出高时,阈值如下图中,V_P=V_N = V_R*( RF/(R1+RF) )+VH*( R1/(R1+RF) );当输出低时,V_P=V_N = V_R*( RF/(R1+RF) )+VL*( R1/(R1+RF) ),实际上,这从符号上可以看出是一个反馈接在正向输入的放大器电路
在这里插入图片描述

在这里插入图片描述

另一种形式参考,可以理解为参考电压是VR=0。
在这里插入图片描述

两个门限的电压分析

从上面可以看出高低门限电压之差就是ΔV=(VH-VL)( R1/(R1+RF),可以看出VH和VL基本恒定,想要区间变小只要R1减小或RF增加。
分析输入和门限的关系
输出是VL,那么就是负输入大于正输入,当负输入减小低门限电压时才能输出VH
输出是VH,就是负输入小于正输入,当负输入增加到高门限电压时,才能输出VL

一种典型的实例

当三个电阻值相同,输出高低电平分别是0和Vcc时,Rf根据不同情况等价与并联不同的电阻,得到如下图所示的等价电路。其中门限电压分别是1/3VCC和2/3Vcc。当然这是有特殊条件下,才能得到如下两组等效电路图。
在这里插入图片描述

这种触发器的功能

从上面可以看出这样可以将输入转换为较稳定的方波,并且可以屏蔽许多干扰的锯齿波信号
由于上下门限电压的效果,是不是可以做为一个充电自停,而且电压不下降到一定位置不会再次充电的装置?

### 迟滞比较器门限值计算 对于同相迟滞比较器而言,可以通过求解阈值的临界条件来确定其上下门限电压。假设供电电源为 \( V_{CC} \),反馈电阻分别为 \( R_1 \) 和 \( R_2 \),则可以得出如下关系: 当输出处于高电平时 (\( V_O=V_{CC} \)),正向输入端电压 \( V_P \) 由下式给出: \[ V_P=\frac{R_2}{R_1+R_2}\cdot V_U+\frac{R_1}{R_1+R_2}\cdot V_N \tag{1}[^1] \] 其中 \( V_U \) 是上参考电压而 \( V_N \) 是负参考电压。 同样地,如果输出切换至低电平,则有新的表达式描述此时的正向输入端电压 \( V'_P \) : \[ V'_P=\frac{R_2}{R_1+R_2}\cdot V_L+\frac{R_1}{R_1+R_2}\cdot V_N \tag{2} \] 这里 \( V_L \) 表示较低的参考电压水平。因此,高低两态之间的差异即构成了所谓的“迟滞性”,使得电路具有一定的抗干扰能力。 为了简化分析过程,通常设定 \( V_N=0 \),这样就可以得到更直观的结果——仅依赖于单侧供电情况下的比例因子以及选定的工作状态 (高/低) 来决定具体的门限位置了。 具体来说,设定了上述前提之后,我们可以进一步推导出门限电压的具体数值: - 上门槛值 \( V_T^{H}=V_P\left(V_O=V_{CC},V_N=0\right)=\frac{R_2}{R_1+R_2}\times V_{CC} \) - 下门槛值 \( V_T^{L}=V'_P\left(V_O=GND,V_N=0\right)=GND \) 值得注意的是,在实际应用场景中可能还需要考虑其他因素的影响,例如温度变化对组件参数造成的微小变动等外部扰动源所带来的影响;另外就是不同型号器件之间可能存在细微差别,所以在设计时应当参照特定产品的数据手册来进行精确调整。 ```python def calculate_threshold_voltages(vcc, r1, r2): """ Calculate the upper and lower threshold voltages of a hysteresis comparator. Parameters: vcc : float Supply voltage in volts. r1 : float Resistance value connected between output and non-inverting input terminal in ohms. r2 : float Feedback resistance connecting to ground from non-inverting input terminal in ohms. Returns: tuple[float, float]: A pair representing the calculated high-side and low-side thresholds respectively. """ vh = (r2 / (r1 + r2)) * vcc vl = 0 return vh, vl ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值