卷积神经网络CNN
Datawhale31期CNN学习资料
以下内容基本出自以上学习资料。
只记录一些之前不太理解的内容。
卷积
对于卷积的理解。相当于一个滤波器,可以提取信号中的特征。使用不同的卷积核会得到不同类型的特征。
为什么说左边的滤波器就提取到了低频信息,右图滤波器提取到高频信息呢?
【1/3,1/3,1/3】滤波器给每一个信号相同的权重,当输入信号都为1时(即没有变化),得到的输出结果就是1,最大。所以更容易提取到变化小的低频信息。
【1,-2,1】滤波器给相邻信号相反的权重,当出现中间值为负,两边为正的输入信号时,得到的输出结果最大。所以更容易提取到变化的高频信息。
其他卷积
转置卷积/微步卷积:低维特征映射到高维特征。
空洞卷积:增加感受野。
卷积的模式
Full:当卷积核与橘色的原始图像有交点的时候,开始进行卷积运算。
Same:当卷积核中心与原始图像有交点时,开始进行卷积运算。得到的特征图大小一般不变(受步长影响)
Valid:当卷积核完全在图像里边时,开始卷积。得到的特征图会变小。
激活函数
ReLU及其改进 PReLU以及ELU