Repunits 介绍——从计算到证明之综述


前言

在数学中,repunit(全一数)是像 11 11 11 111 111 111 1111 1111 1111 这样只包含 1 1 1 的整数,记为 R n R_n Rn 。Repunit 这个词代表“重复单位数”的意思,是 1966 年 Albert H.Beiler 在他的《数字理论的娱乐》一书中首次提出的。

多数情况下, R 2 = 11 = ( 11 ) 10 R_2=11=(11)_{10} R2=11=(11)10 ,即指十进制下的 11 11 11 。本文中,十进制数都正常书写,无需注明下标。十进制下的具体表达式如下: R n = 1 0 n − 1 10 − 1 = 111...1    ( n    个    1 ) R_n=\frac{10^n-1}{10-1}=111...1 \; (n \; 个 \; 1) Rn=10110n1=111...1(n1) 当然,我们也会讨论其它进制下的全一数,比如 ( 11 ) 2 = 3 (11)_{2} = 3 (11)2=3 ( 11 ) 3 = 4 (11)_3=4 (11)3=4 ( 11 ) 4 = 5 (11)_4=5 (11)4=5 ( 11 ) 5 = 6 (11)_5=6 (11)5=6 等等。其中,二进制下的 n n n 位全一数有如下特点: ( 111...1 ) 2 = ∑ i = 0 n − 1 2 i = 2 n − 1 (111...1)_2 = \sum^{n-1}_{i=0} 2^i = 2^n -1 (111...1)2=i=0n12i=2n1 此即梅森数。下面我们先来讨论十进制下的全一数。


一、十进制全一数

关于全一数的素因子分解,目前已经完全分解了从 R 2 R_2 R2 R 352 R_{352} R352 的全部全一数, R 353 R_{353} R353 是最小的未完全分解出来的全一数。目前仅仅知道 R 353 = 1781225293 × 1044667255801249 × [ 5971186761... < 328 > ] R_{353}=1781225293 \times 1044667255801249 \times [5971186761...<328>] R353=1781225293×1044667255801249×[5971186761...<328>] 其中方括号里面是一个 328 328 328 位的合数。对于大整数的素因子分解,这是一件非常麻烦的计算任务。至于该合数的分解,可以尝试用 Mathematica 来进行,语句如下:

FactorInteger[(10^353 - 1)/(9*1781225293*1044667255801249)] 

如果你能坚持等待下去,相信花很长的时间都不一定会输出结果,这是一个计算复杂度非常高的问题。如果是位数较小的全一数,比如 R 11 R_{11} R11 ,输出结果就会很快。

FactorInteger[(10^11 - 1)/9] 

结果为:

{{21649, 1}, {513239, 1}}

R 11 = 21649 × 513239 R_{11}=21649 \times 513239 R11=21649×513239 ,这是一个殆素数。

至于何时 R n R_n Rn 为素数,这是一个异常艰难的问题,但我们至少知道,如果 R n R_n Rn 为素数,则 n n n 一定是素数,反之不成立,比如 R 11 R_{11} R11 就是一例。

目前已知的全一素数仅 R 2 R_2 R2 R 19 R_{19} R19 R 23 R_{23} R23 R 317 R_{317} R317 R 1031 R_{1031} R1031 R 49081 R_{49081} R49081 6 6 6 个,素数大小急剧增长,仅仅第 6 6 6 个素数,就快到 5 5 5 万位数了!该素数也是最近 2022 年 3 月 21 日才被 ECPP 证明为素数,是目前 ECPP 证明的第二大素数。同时, R 49081 R_{49081} R49081 还是最先由计算机证明其素性的最小的全一素数,之前直到 R 1031 R_{1031} R1031 都还是通过数学的方式首先证明其素性。

例如, R 19 R_{19} R19 系由 “n ±1” 判别法证明为素数的, R 23 R_{23} R23 是 1929 年被证明为素数的, R 317 R_{317} R317 是 1979 年由威廉斯证明的, R 1031 R_{1031} R1031 是 1986 年由威廉斯和达内证明其为素数的。

我们还知道, R 86453 R_{86453} R86453 R 109297 R_{109297} R109297 R 270343 R_{270343} R270343 R 5794777 R_{5794777} R5794777 R 8177207 R_{8177207} R8177207 是后续 5 5 5可能的素数,它们已经通过了 Miller-Rabin 素性测试。这个测试持续到了 1 0 10 7 {10^{10}}^{7} 10107 ,目前一共就发现了 11 11 11 个(含可能的)素数。要想用 ECPP 进一步证明这些巨大的数是素数,恐怕还要等很多年。

可见全一素数在全一数中非常之稀疏,从可能的素数 R 270343 R_{270343} R270343 到下一个可能的素数 R 5794777 R_{5794777} R5794777 ,中间跨越了无比巨大的鸿沟,差点让我们以为只有有限个全一素数了。还好有大素数爱好者坚持了搜寻,才相继发现了 R 5794777 R_{5794777} R5794777 R 8177207 R_{8177207} R8177207

关于全一数,我们有全一素数猜想

猜想 1    \; 有无穷个全一素数。

这个猜想是非凡的,因为全一素数的分布是十分稀疏且“杂乱无章”的,竟然还有无穷多个这样的素数。该素数序列越往右看,会越出乎想象地大,即便用当前最好的计算设备以及最好的算法,都不可能完全判定这个素数序列的前 20 20 20 个素数,现在连第 12 12 12 个可能的全一素数是什么都还不知道。

至于理论证明方面,也是遥遥无期,没有实质性突破。这个猜想跟梅森素数猜想一样,异常艰难。属于计算机算不动,人脑也想不动的两难境地。

让这些可能的全一素数 R R R 如此难以证明其素性的原因是,我们没有一个简单的方法来分解 R − 1 R-1 R1 R + 1 R+1 R+1,实际上快速的素性证明方法都需要做相应的因子分解。

以下给出了 11 11 11 个(含可能的)全一素数的 log ⁡ log ⁡ \log\log loglog 分布图:

在这里插入图片描述
其中横坐标表示第 n n n 个素数,纵坐标为 log ⁡ log ⁡ ( R n ) \log\log(R_n) loglog(Rn) 的值, 可以发现这 11 个数据点分布在一条直线附近。在假设有无穷个全一素数的条件下,当 n → + ∞ n \to +\infty n+ 时,这根预测的拟合直线为: Y = G ⋅ X + C Y = G \cdot X + C Y=GX+C 其中, G = e γ ≈ 1.781072417993 G=e^{\gamma}\approx 1.781072417993 G=eγ1.781072417993 。上图递增直线的存在也是我们猜测有无穷多个全一素数的间接原因,同时暗示后面 5 5 5 个可能的素数极有可能就是素数。

基于全一素数猜想,我也提出了较弱的猜想:

猜想 2    \; 存在无穷个全一殆素数。

这个猜想是我于 2019 年 1 月 22 日提出的,因为 R 11 R_{11} R11 R 17 R_{17} R17 R 47 R_{47} R47 R 59 R_{59} R59 R 71 R_{71} R71 R 211 R_{211} R211 R 251 R_{251} R251 R 311 R_{311} R311 R 347 R_{347} R347 R 457 R_{457} R457 R 461 R_{461} R461 都是殆素数,显然比全一素数多更多,所以才有了上面的猜想。同样发现,这些殆素数的下标也都是素数。

相对来说,猜想 2 比猜想 1 要容易的多。即便如此,我们也难以证明。

二、二进制全一数

前面已经提到,二进制全一数,就是梅森数,关于二进制全一素数的猜想就是梅森素数猜想。该猜想由来已久,其难度,不亚于前面的全一素数猜想。目前已发现 51 51 51 个梅森素数,比仅知道 6 6 6 个的全一素数是要多得多了。

关于梅森素数的分布,有个重要的周氏猜测,是 1992 年语言学家周海中在《梅森素数的分布规律》一文中以精确表达式而提出的,至今未被证明或否定。

周氏猜测    \; 2 2 n < p < 2 2 n + 1 2^{2^n}<p<2^{2^{n+1}} 22n<p<22n+1 时, M p M_p Mp 中有 2 n + 1 − 1 2^{n+1}-1 2n+11 个梅森素数。

比如,当 n = 1 n=1 n=1 时,在 4 < p < 16 4<p<16 4<p<16 范围内,猜测有 3 3 3 个梅森素数。实际上就有 M 5 M_5 M5 M 7 M_7 M7 M 13 M_{13} M13 这三个梅森素数。

n = 2 n=2 n=2 时,在 16 < p < 256 16<p<256 16<p<256 范围内,猜测有 7 7 7 个梅森素数。实际上就有 M 17 M_{17} M17 M 19 M_{19} M19 M 31 M_{31} M31   \: M 61 M_{61} M61 M 89 M_{89} M89 M 107 M_{107} M107 M 127 M_{127} M127 这七个梅森素数。

n = 3 n=3 n=3 时,在 256 < p < 65536 256<p<65536 256<p<65536 范围内,猜测有 15 15 15 个梅森素数,实际上就有 M 521 M_{521} M521 M 44497 M_{44497} M44497 这十五个梅森素数。

n = 4 n=4 n=4 时,由于上界 2 2 5 = 2 32 = 4 , 294 , 967 , 296 2^{2^{5}}=2^{32}=4,294,967,296 225=232=4,294,967,296 ,目前还无法验证是不是有 31 个素数,因为我们只发现了从 M 86243 M_{86243} M86243 M 82589933 M_{82589933} M82589933 24 24 24 个梅森素数,远未达到前面的上界。

周氏猜测比梅森素数猜想还要强,我们可以由周氏猜测,直接得出梅森素数猜想,即梅森素数有无穷多个,这又是一个很难肯的硬骨头。

三、最近结果综述

最近的结果无疑要提及 2022 年菲尔兹奖得主詹姆斯·梅纳德 (James Maynard) 所做的工作了。这位 80 后在解析数论方面的天才贡献是非常之巨大的,解析数论方向能获得数学界的最高荣誉也是十分罕见的。

我们先来看看梅纳德证明的如下结果:

定理 1    \; 在全体素数中,删去所有含数字 i i i 的素数 ( i = 0 , . . . , 9 i=0,...,9 i=0,...,9),剩下的素数之集记为 P \mathbb{P} P ,则 P \mathbb{P} P 中仍然含有无穷个素数。

例如删除所有含数字 1 1 1 的素数,则 P = { 2 , 3 , 5 , 7 , 23 , 29 , 37 , . . . } \mathbb{P}=\{ 2, 3, 5, 7, 23, 29, 37, ... \} P={2,3,5,7,23,29,37,...} ,按照上述定理, P \mathbb{P} P 中还有无穷个素数。定理的证明参考文献 Primes with Restricted Digits, James Maynard, 2019,该论文足有 70 70 70 页。

据说,梅纳德在证明这个结论中也遇到了艰辛。他首先考虑从更大的进位制开始证明这个结论。比如 100 100 100 进制下,去掉其中的一个数字,则每一位还剩 99 99 99 种取法,这对整体上可表示的数的范围的影响非常之小,证明也更容易。所以梅纳德就从更大的进制开始证明,逐渐逼近 10 10 10 进制的情形。而困难就发生在证明 12 12 12 进制的情况上,经过长时间的深度思考,他最终绕过这个困难,一并解决完成了 10 10 10 进制情况下上述定理 1 的证明。

目前还没有进一步将进位制继续向更小的方向推进的结果,说明其难度之大。如果我们能将进位制一直推进到 2 2 2 进制的话,此时只能删去数字 0 0 0,留下二进制的全一数,这正是梅森数,那么定理 1 论述的就是就是梅森素数猜想了。这给出了梅森素数猜想证明的一个有效途径,其困难可想而知,因为我们要从 10 10 10 进制逼近到 2 2 2 进制还有很长的路要走。

另一方面,目标还是限定在 10 10 10 进制范围内,我们也可以继续增加删除的数字,比如

在全体素数中,删去所有含数字 i i i j j j 的素数 ( 0 ≤ i < j ≤ 9 0 \leq i < j \leq 9 0i<j9) ,剩下的素数之集记为 P 2 \mathbb{P_2} P2 ,那么 P 2 \mathbb{P_2} P2 中是否含有无穷个元素 ?

上述问题目前也没有解决,难度还是十分巨大的。

如上过程持续进行,直到删除所有含数字 { 0 , 2 , 3 , . . . , 9 } \{ 0,2,3, ..., 9 \} {0,2,3,...,9} 的素数 (仅 1 1 1 保留),则剩下的素数之集 P 9 \mathbb{P}_9 P9 就是全一素数的全体,那么 P 9 \mathbb{P}_9 P9 中是否含有无穷个元素 ?

此即全一素数猜想,我们现在可以体会这个问题的证明难度是有多么的巨大。

总之,梅森素数猜想和全一素数猜想,这两个问题的难点侧重不同,梅森素数猜想难在进制压缩上,而全一素数猜想难在删除数字的膨胀上,但最终都只保留了数字 1 1 1 ,也许这是两个很本源的难题。

最后,作者真希望能在有生之年看到这两个猜想的证明啊 !

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tengfei Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值