斐波那契数列中的素数与因子综述
一、斐波那契数列的定义
斐波那契数列即是:
1
,
1
,
2
,
3
,
5
,
8
,
13
,
21
,
34
,
55
,
89
,
⋯
1,1,2,3,5,8,13,21,34,55,89, \cdots
1,1,2,3,5,8,13,21,34,55,89,⋯ ,如果用递推式表述即为:
F
(
0
)
=
0
F(0)=0
F(0)=0 ,
F
(
1
)
=
1
F(1)=1
F(1)=1 ,
F
(
n
)
=
F
(
n
−
1
)
+
F
(
n
−
2
)
F(n)=F(n-1)+F(n-2)
F(n)=F(n−1)+F(n−2) ,
n
≥
2
n\geq 2
n≥2 。
二、斐波那契素数
在斐波那契数列中,最令人着迷的,当属其中的素数了。截止2023年1月,我们已经知道的斐波那契素数或斐波那契可能的素数如下表所示(所在位置 a ( n ) a(n) a(n) 表示对应的第 a ( n ) a(n) a(n) 个斐波那契数,从 1 1 1 数起,例如 F 3 = 2 F_{3}=2 F3=2 , F 4 = 3 F_{4}=3 F4=3 , F 5 = 5 F_{5}=5 F5=5 , F 6 = 8 F_{6}=8 F6=8):
序号 n n n | 所在位置 a ( n ) a(n) a(n) |
---|---|
1 | 3 |
2 | 4 |
3 | 5 |
4 | 7 |
5 | 11 |
6 | 13 |
7 | 17 |
8 | 23 |
9 | 29 |
10 | 43 |
11 | 47 |
12 | 83 |
13 | 131 |
14 | 137 |
15 | 359 |
16 | 431 |
17 | 433 |
18 | 449 |
19 | 509 |
20 | 569 |
21 | 571 |
22 | 2971 |
23 | 4723 |
24 | 5387 |
25 | 9311 |
26 | 9677 |
27 | 14431 |
28 | 25561 |
29 | 30757 |
30 | 35999 |
31 | 37511 |
32 | 50833 |
33 | 81839 |
34 | 104911 |
35 | 130021 |
36 | 148091 |
37 | 201107 |
38 | 397379 |
39 | 433781 |
40 | 590041 |
41 | 593689 |
42 | 604711 |
43 | 931517 |
44 | 1049897 |
45 | 1285607 |
46 | 1636007 |
47 | 1803059 |
48 | 1968721 |
49 | 2904353 |
50 | 3244369 |
51 | 3340367 |
52 | 4740217 |
53 | 6530879 |
在上表中,一共有 53 53 53 个斐波那契(可能的)素数。从序号 1 到序号 36 都已经被证明是素数。最大的一个 F 148091 F_{148091} F148091 于 2021 年 9 月被 ECPP 证明为素数,这是一个 30949 30949 30949 位的大素数。目前已经被证明的斐波那契素数详情见下表:
序号 n n n | 斐波那契数 F n F_n Fn | 数字位数 | 是否素数、被证明时间、证明算法 |
---|---|---|---|
3 | 2 | 1 | prime |
4 | 3 | 1 | prime |
5 | 5 | 1 | prime |
7 | 13 | 2 | prime |
11 | 89 | 2 | prime |
13 | 233 | 3 | prime |
17 | 1597 | 4 | prime |
23 | 28657 | 5 | prime |
29 | 514229 | 6 | prime |
43 | 433494437 | 9 | prime |
47 | 2971215073 | 10 | prime |
83 | 99194853094755497 | 17 | prime |
131 | 10663404174…72169 | 28 | prime |
137 | 19134702400…23917 | 29 | prime |
359 | 47542043773…76241 | 75 | prime |
431 | 52989271100…62369 | 90 | prime |
433 | 13872771278…68353 | 91 | prime |
449 | 30617199924…65949 | 94 | prime |
509 | 10597999265…29909 | 107 | prime |
569 | 36684474316…65869 | 119 | prime |
571 | 96041200618…74629 | 119 | prime |
2971 | 35710356064…16229 | 621 | prime |
4723 | 50019563612…91957 | 987 | prime |
5387 | 29304412869…55833 | 1126 | prime,Dec 1990 |
9311 | 34232086066…76289 | 1946 | prime,Mar 1995 |
9677 | 10565977873…70357 | 2023 | prime,Nov 2000,ECPP |
14431 | 35575535439…75869 | 3016 | prime,Apr 2001 |
25561 | 38334290314…14961 | 5342 | prime,Jul 2001 |
30757 | 30434499662…75737 | 6428 | prime,Jul 2001,cyclotomy |
35999 | 99214776140…24001 | 7523 | prime,Jul 2001,cyclotomy |
37511 | 96802910427…75089 | 7839 | prime,Jun 2005,CHG |
50833 | 13159270824…02753 | 10624 | prime,Oct 2005,CHG+ECPP |
81839 | 97724940760…46561 | 17103 | prime,Apr 2001 |
104911 | 5660323637…84189 | 21925 | prime,Oct 2015,ECPP |
130021 | 2706998033…75321 | 27173 | prime,May 2021,ECPP |
148091 | 6904738850…74809 | 30949 | prime,Sep 2021,ECPP |
其中, F 130021 F_{130021} F130021 早在 2002 年 12 月就被发现是一个 PRP(可能的素数或概率素数), F 148091 F_{148091} F148091 早在 2003 年 2 月就被发现是一个 PRP 。让人吃惊的是,它们都历时超过 18 年才最终通过 ECPP 证明其为素数!
斐波那契概率素数详情参见下表:
序号 n n n | 斐波那契数 F n F_n Fn | 数字位数 | 被 PRP 证明的时间 |
---|---|---|---|
201107 | 3371962609…27913 | 42029 | February 2003 |
397379 | 8912712429…66921 | 83047 | August 2003 |
433781 | 3296782330…74981 | 90655 | September 2003 |
590041 | 8448035604…82641 | 123311 | January 2005 |
593689 | 2059052250…74289 | 124074 | January 2005 |
604711 | 5962634693…37389 | 126377 | February 2005 |
931517 | - | 194676 | September 2008 |
1049897 | - | 219416 | October 2008 |
1285607 | - | 268676 | November 2008 |
1636007 | - | 341905 | March 2009 |
1803059 | - | 376817 | June 2009 |
1968721 | - | 411439 | November 2009 |
2904353 | - | 606974 | July 2014 |
3244369 | - | 678033 | September 2017 |
3340367 | - | 698096 | March 2018 |
4740217 | - | 990647 | July 2022 |
6530879 | - | 1364873 | August 2022 |
上表中的 F 6530879 F_{6530879} F6530879 在全体最大的 PRP 排名中排在第 29 名(截止 2023 年 1 月),这是一个具有 1 , 364 , 873 1,364,873 1,364,873 位的概率素数。目前通过 ECPP 是不可能证明这样大的素数的,现在 ECPP 的极限是证明了一个 57 , 125 57,125 57,125 位的大素数(2022 年 9 月)。
三、斐波那契素数的性质
目前我们尚不知道是否有无限多个斐波那契素数,但猜测有无穷多个。
2002 年,尼克·麦金农证明,既属于孪生素数又是斐波那契数的数仅 3 3 3、 5 5 5 和 13 13 13 。即这三个数不但是斐波那契素数,且还是孪生素数对里面的数( 3 + 2 3+2 3+2 是素数、 5 ± 2 5\pm2 5±2 是素数、 13 − 2 13-2 13−2 是素数)。基于此,我们知道,除此三个斐波那契素数外的其他斐波那契素数 F F F ,皆有 F ± 2 F\pm 2 F±2 不是素数。
除了 n = 4 n=4 n=4 的情况外,所有斐波那契素数都有一个素数下标(但并非每个素数下标都产生斐波那契素数)。例如 F 13 = 233 F_{13}=233 F13=233 是素数,同时还有下标 13 13 13 是素数。另一面,虽然下标 19 19 19 是素数,但 F 19 F_{19} F19 却不是素数, F 19 = 4181 = 37 × 113 F_{19}=4181=37 \times 113 F19=4181=37×113。
当素数 p ≥ 5 p\geq 5 p≥5 时,斐波那契素数 F p ≡ 1 ( m o d 4 ) F_p \equiv 1 \;(mod \; 4) Fp≡1(mod4) 。这个性质方便我们寻找更大的斐波那契概率素数。
四、斐波那契数的因子
一个值得提及的则是 Carmichael 定理。该定理说,若 n > 12 n>12 n>12 ,则第 n n n 个斐波那契数 F n F_n Fn 至少有一个素因子 p p p,使得该素因子 p p p 不整除任何前面的斐波那契数 F m F_m Fm ( ∀ m < n \forall m<n ∀m<n ) 。Carmichael 于 1913 年证明了该定理,Yabuta 于 2001 年简化了前者的证明。
满足 Carmichael 定理的素因子 p p p 被称为 F n F_n Fn 的特征因子或本原素因子。例如 F 19 F_{19} F19 的本原素因子包括 37 37 37 和 113 113 113 。关于斐波那契数 F n F_n Fn 的最小本原素因子,我们有如下的序列(对应 F 1 F_1 F1 至 F 50 F_{50} F50 的 50 50 50 个最小本原素因子):
1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 37, 41, 421, 199, 28657, 23, 3001, 521, 53, 281, 514229, 31, 557, 2207, 19801, 3571, 141961, 107, 73, 9349, 135721, 2161, 2789, 211, 433494437, 43, 109441, 139, 2971215073, 1103, 97, 101, ⋯ \cdots ⋯
序列中的 1 表示对应的 F n F_n Fn 没有本原素因子。比如 F 1 = F 2 = 1 F_1=F_2=1 F1=F2=1 没有素因子, F 6 = 8 F_6=8 F6=8 的唯一素因子 2 ∣ F 3 2|F_3 2∣F3 , F 12 = 144 F_{12}=144 F12=144 的素因子 2 ∣ F 3 2|F_3 2∣F3 以及素因子 3 ∣ F 4 3|F_4 3∣F4 。在全体斐波那契数中,仅此 4 4 4 例没有本原素因子。
至于 F 1 F_1 F1 至 F 1408 F_{1408} F1408 的 1408 1408 1408 个最小本原素因子详细列表详见 Table of n, a(n) for n = 1…1408 。其中 F 1387 F_{1387} F1387 的最小本原素因子竟然是一个 271 271 271 位的大素数!该数如下:
9738209669280283551583970372686804805480979375262965933363410873158912870732739236189458760508419379171878358668322176737065516631531941428527045162313135752671843335737491215047606410071387451451004810477042265355923765956489521739665129452528135635539197062284973634401
这 1408 1408 1408 个最小本原素因子的对数散点图如下所示:
事实上,关于斐波那契数我们有一个重要性质:对于任意正整数 m > 1 m>1 m>1,总存在一个斐波那契数 F n F_n Fn 使得 m ∣ F n m|F_n m∣Fn 。因此前面的最小本原素因子序列仅仅是对全体素数的重排。
至于斐波那契数列模 n n n 的周期(也称为 Pisano 周期),可以参考此处。其中表的第一列为模数 n n n ,第二列为对应的周期。关于 Pisano 周期,我们知道,除了前两个模 1 、 2 1、2 1、2 的周期为奇数以外,其余的 Pisano 周期皆为偶数。
如果说最小本原素因子序列是对全体素数的重排,那么反过来,我们也可以根据素数的先后顺序重排斐波拉契数列,这就是斐波那契切入点的概念。斐波那契切入点具体是指最小的 m > 0 m > 0 m>0 使得第 n n n 个素数整除 F m F_m Fm 。
第 1 1 1 到 10000 10000 10000 个素数的斐波那契切入点的列表参见此处。表中的第一列表示第 n n n 个素数,第二列表示第几个斐波那契数,亦即对应第 n n n 个素数的斐波那契切入点。其中第 9907 9907 9907 个素数的斐波那契切入点竟然只是 72 72 72 !
前 64 64 64 个斐波那契切入点如下:
3, 4, 5, 8, 10, 7, 9, 18, 24, 14, 30, 19, 20, 44, 16, 27, 58, 15, 68, 70, 37, 78, 84, 11, 49, 50, 104, 36, 27, 19, 128, 130, 69, 46, 37, 50, 79, 164, 168, 87, 178, 90, 190, 97, 99, 22, 42, 224, 228, 114, 13, 238, 120, 250, 129, 88, 67、270、139、28、284、147、44、310
至于被 n n n 整除且最小的斐波那契数的序列(前 43 43 43 个)为:
1, 2, 3, 8, 5, 144, 21, 8, 144, 610, 55, 144, 13, 46368, 6765, 144, 34, 144, 2584, 832040, 21, 832040, 46368, 144, 75025, 10946, 14930352, 46368, 377, 1548008755920, 832040, 46368, 6765, 34, 102334155, 144, 4181, 2584, 317811, 832040, 6765, 46368, 701408733
前 1000 1000 1000 个的表见此处。我们发现,当 n = 750 n=750 n=750 时,能被 750 750 750 整除的最小的斐波那契数是:
13551125668563101951636936867148408377786010712418497242133543153221487310873528750612259354035717265300373778814347320257699257082356550045349914102924249595997483982228699287527241931811325095099642447621242200209254439920196960465321438498305345893378932585393381539093549479296194800838145996187122583354898000
该数竟是一个 314 314 314 位的斐波那契数 !
同样类似于斐波那契切入点的定义,我们可以定义一般整数 n n n 的斐波那契切入点:也就是最小的整数 k ≥ 1 k \geq 1 k≥1 使得正整数 n n n 整除 F k F_k Fk 。前 70 70 70 个一般整数 n n n 的斐波那契切入点如下(更多请查阅此处):
1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, 8, 30, 24, 12, 25, 21, 36, 24, 14, 60, 30, 24, 20, 9, 40, 12, 19, 18, 28, 30, 20, 24, 44, 30, 60, 24, 16, 12, 56, 75, 36, 42, 27, 36, 10, 24, 36, 42, 58, 60, 15, 30, 24, 48, 35, 60, 68, 18, 24, 120
我们记一般整数 n n n 的斐波那契切入点为 F E P ( n ) FEP(n) FEP(n) ,现在的问题是,何时会有 F E P ( n ) = n FEP(n)=n FEP(n)=n ?也就是说,何时满足整数 n n n 整除第 n n n 个斐波那契数?我们先看下表:
n n n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | … |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F i F_i Fi | 1 | 2 | 3 | 8 | 5 | 144 | 21 | 8 | 144 | 610 | 55 | 144 | 13 | … |
i i i | 1 | 3 | 4 | 6 | 5 | 12 | 8 | 6 | 12 | 15 | 10 | 12 | 7 | … |
其中第三行的 i i i 即是 F E P ( n ) FEP(n) FEP(n) ,显然当 n = 1 、 5 、 12 n=1、5、12 n=1、5、12 时, F E P ( n ) = n FEP(n)=n FEP(n)=n 。一般地,当 n = 1 、 5 、 12 、 25 、 60 、 125 、 300 、 625 、 1500 、 3125 ⋯ n=1、5、12、25、60、125、300、625、1500、3125 \cdots n=1、5、12、25、60、125、300、625、1500、3125⋯ 时, F E P ( n ) = n FEP(n)=n FEP(n)=n 。2012 年,Marques 证明了 F E P ( n ) = n FEP(n)=n FEP(n)=n 当且仅当对于某些 k ≥ 0 k\geq 0 k≥0 ,有 n = 5 k n=5^k n=5k 或 n = 12 ⋅ 5 k n=12\cdot 5^k n=12⋅5k 。
由于 F E P ( F m ) = m FEP(F_m)=m FEP(Fm)=m 对于任意的 m > 1 m>1 m>1 成立,我们可以知道序列 { F E P ( n ) } \{FEP(n)\} {FEP(n)} 包含一切大于 2 2 2 的整数。
至于上界估计方面,一个猜测认为 F E P ( n ) ≤ 2 n FEP(n) ≤ 2n FEP(n)≤2n 成立。而目前我们已证明的结果为 F E P ( n ) ≤ n 2 FEP(n) ≤ n^2 FEP(n)≤n2 。
至此,我们讨论了斐波那契数列的诸多性质和猜测。对于斐波那契素数,相信在不久的将来,将会证明 F 201107 F_{201107} F201107 是一个素数。