斐波那契数列中的素数与因子综述


一、斐波那契数列的定义

斐波那契数列即是: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , 34 , 55 , 89 , ⋯ 1,1,2,3,5,8,13,21,34,55,89, \cdots 1123581321345589 ,如果用递推式表述即为:
F ( 0 ) = 0 F(0)=0 F(0)=0 F ( 1 ) = 1 F(1)=1 F(1)=1 F ( n ) = F ( n − 1 ) + F ( n − 2 ) F(n)=F(n-1)+F(n-2) F(n)=F(n1)+F(n2) n ≥ 2 n\geq 2 n2


二、斐波那契素数

斐波那契数列中,最令人着迷的,当属其中的素数了。截止2023年1月,我们已经知道的斐波那契素数斐波那契可能的素数如下表所示(所在位置 a ( n ) a(n) a(n) 表示对应的第 a ( n ) a(n) a(n) 个斐波那契数,从 1 1 1 数起,例如 F 3 = 2 F_{3}=2 F3=2 F 4 = 3 F_{4}=3 F4=3 F 5 = 5 F_{5}=5 F5=5 F 6 = 8 F_{6}=8 F6=8):

序号 n n n所在位置 a ( n ) a(n) a(n)
13
24
35
47
511
613
717
823
929
1043
1147
1283
13131
14137
15359
16431
17433
18449
19509
20569
21571
222971
234723
245387
259311
269677
2714431
2825561
2930757
3035999
3137511
3250833
3381839
34104911
35130021
36148091
37201107
38397379
39433781
40590041
41593689
42604711
43931517
441049897
451285607
461636007
471803059
481968721
492904353
503244369
513340367
524740217
536530879

在上表中,一共有 53 53 53 个斐波那契(可能的)素数。从序号 1 到序号 36 都已经被证明是素数。最大的一个 F 148091 F_{148091} F148091 于 2021 年 9 月被 ECPP 证明为素数,这是一个 30949 30949 30949 位的大素数。目前已经被证明的斐波那契素数详情见下表:

序号 n n n斐波那契数 F n F_n Fn数字位数是否素数、被证明时间、证明算法
321prime
431prime
551prime
7132prime
11892prime
132333prime
1715974prime
23286575prime
295142296prime
434334944379prime
47297121507310prime
839919485309475549717prime
13110663404174…7216928prime
13719134702400…2391729prime
35947542043773…7624175prime
43152989271100…6236990prime
43313872771278…6835391prime
44930617199924…6594994prime
50910597999265…29909107prime
56936684474316…65869119prime
57196041200618…74629119prime
297135710356064…16229621prime
472350019563612…91957987prime
538729304412869…558331126prime,Dec 1990
931134232086066…762891946prime,Mar 1995
967710565977873…703572023prime,Nov 2000,ECPP
1443135575535439…758693016prime,Apr 2001
2556138334290314…149615342prime,Jul 2001
3075730434499662…757376428prime,Jul 2001,cyclotomy
3599999214776140…240017523prime,Jul 2001,cyclotomy
3751196802910427…750897839prime,Jun 2005,CHG
5083313159270824…0275310624prime,Oct 2005,CHG+ECPP
8183997724940760…4656117103prime,Apr 2001
1049115660323637…8418921925prime,Oct 2015,ECPP
1300212706998033…7532127173prime,May 2021,ECPP
1480916904738850…7480930949prime,Sep 2021,ECPP

其中, F 130021 F_{130021} F130021 早在 2002 年 12 月就被发现是一个 PRP可能的素数概率素数), F 148091 F_{148091} F148091 早在 2003 年 2 月就被发现是一个 PRP 。让人吃惊的是,它们都历时超过 18 年才最终通过 ECPP 证明其为素数!

斐波那契概率素数详情参见下表:

序号 n n n斐波那契数 F n F_n Fn数字位数被 PRP 证明的时间
2011073371962609…2791342029February 2003
3973798912712429…6692183047August 2003
4337813296782330…7498190655September 2003
5900418448035604…82641123311January 2005
5936892059052250…74289124074January 2005
6047115962634693…37389126377February 2005
931517-194676September 2008
1049897-219416October 2008
1285607-268676November 2008
1636007-341905March 2009
1803059-376817June 2009
1968721-411439November 2009
2904353-606974July 2014
3244369-678033September 2017
3340367-698096March 2018
4740217-990647July 2022
6530879-1364873August 2022

上表中的 F 6530879 F_{6530879} F6530879 在全体最大的 PRP 排名中排在第 29 名(截止 2023 年 1 月),这是一个具有 1 , 364 , 873 1,364,873 1,364,873 位的概率素数。目前通过 ECPP 是不可能证明这样大的素数的,现在 ECPP 的极限是证明了一个 57 , 125 57,125 57,125 位的大素数(2022 年 9 月)。


三、斐波那契素数的性质

目前我们尚不知道是否有无限多个斐波那契素数,但猜测有无穷多个

2002 年,尼克·麦金农证明,既属于孪生素数又是斐波那契数的数仅 3 3 3 5 5 5 13 13 13 。即这三个数不但是斐波那契素数,且还是孪生素数对里面的数( 3 + 2 3+2 3+2 是素数、 5 ± 2 5\pm2 5±2 是素数、 13 − 2 13-2 132 是素数)。基于此,我们知道,除此三个斐波那契素数外的其他斐波那契素数 F F F ,皆有 F ± 2 F\pm 2 F±2 不是素数。

除了 n = 4 n=4 n=4 的情况外,所有斐波那契素数都有一个素数下标(但并非每个素数下标都产生斐波那契素数)。例如 F 13 = 233 F_{13}=233 F13=233 是素数,同时还有下标 13 13 13 是素数。另一面,虽然下标 19 19 19 是素数,但 F 19 F_{19} F19 却不是素数, F 19 = 4181 = 37 × 113 F_{19}=4181=37 \times 113 F19=4181=37×113

当素数 p ≥ 5 p\geq 5 p5 时,斐波那契素数 F p ≡ 1    ( m o d    4 ) F_p \equiv 1 \;(mod \; 4) Fp1(mod4) 。这个性质方便我们寻找更大的斐波那契概率素数


四、斐波那契数的因子

一个值得提及的则是 Carmichael 定理。该定理说,若 n > 12 n>12 n>12 ,则第 n n n 个斐波那契数 F n F_n Fn 至少有一个素因子 p p p,使得该素因子 p p p 不整除任何前面的斐波那契数 F m F_m Fm ( ∀ m < n \forall m<n m<n ) 。Carmichael 于 1913 年证明了该定理,Yabuta 于 2001 年简化了前者的证明。

满足 Carmichael 定理的素因子 p p p 被称为 F n F_n Fn特征因子本原素因子。例如 F 19 F_{19} F19本原素因子包括 37 37 37 113 113 113 。关于斐波那契数 F n F_n Fn最小本原素因子,我们有如下的序列(对应 F 1 F_1 F1 F 50 F_{50} F50 50 50 50最小本原素因子):

1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 37, 41, 421, 199, 28657, 23, 3001, 521, 53, 281, 514229, 31, 557, 2207, 19801, 3571, 141961, 107, 73, 9349, 135721, 2161, 2789, 211, 433494437, 43, 109441, 139, 2971215073, 1103, 97, 101, ⋯ \cdots

序列中的 1 表示对应的 F n F_n Fn 没有本原素因子。比如 F 1 = F 2 = 1 F_1=F_2=1 F1=F2=1 没有素因子, F 6 = 8 F_6=8 F6=8 的唯一素因子 2 ∣ F 3 2|F_3 2∣F3 F 12 = 144 F_{12}=144 F12=144 的素因子 2 ∣ F 3 2|F_3 2∣F3 以及素因子 3 ∣ F 4 3|F_4 3∣F4 。在全体斐波那契数中,仅此 4 4 4 例没有本原素因子

至于 F 1 F_1 F1 F 1408 F_{1408} F1408 1408 1408 1408最小本原素因子详细列表详见 Table of n, a(n) for n = 1…1408 。其中 F 1387 F_{1387} F1387最小本原素因子竟然是一个 271 271 271 位的大素数!该数如下:

9738209669280283551583970372686804805480979375262965933363410873158912870732739236189458760508419379171878358668322176737065516631531941428527045162313135752671843335737491215047606410071387451451004810477042265355923765956489521739665129452528135635539197062284973634401

1408 1408 1408最小本原素因子对数散点图如下所示:

在这里插入图片描述

事实上,关于斐波那契数我们有一个重要性质:对于任意正整数 m > 1 m>1 m>1,总存在一个斐波那契数 F n F_n Fn 使得 m ∣ F n m|F_n mFn 。因此前面的最小本原素因子序列仅仅是对全体素数的重排

至于斐波那契数列模 n n n 的周期(也称为 Pisano 周期),可以参考此处。其中表的第一列为模数 n n n ,第二列为对应的周期。关于 Pisano 周期,我们知道,除了前两个模 1 、 2 1、2 12 的周期为奇数以外,其余的 Pisano 周期皆为偶数

如果说最小本原素因子序列是对全体素数的重排,那么反过来,我们也可以根据素数的先后顺序重排斐波拉契数列,这就是斐波那契切入点的概念。斐波那契切入点具体是指最小的 m > 0 m > 0 m>0 使得第 n n n 个素数整除 F m F_m Fm

1 1 1 10000 10000 10000 个素数的斐波那契切入点的列表参见此处。表中的第一列表示第 n n n 个素数,第二列表示第几个斐波那契数,亦即对应第 n n n 个素数的斐波那契切入点。其中第 9907 9907 9907 个素数的斐波那契切入点竟然只是 72 72 72

64 64 64斐波那契切入点如下:

3, 4, 5, 8, 10, 7, 9, 18, 24, 14, 30, 19, 20, 44, 16, 27, 58, 15, 68, 70, 37, 78, 84, 11, 49, 50, 104, 36, 27, 19, 128, 130, 69, 46, 37, 50, 79, 164, 168, 87, 178, 90, 190, 97, 99, 22, 42, 224, 228, 114, 13, 238, 120, 250, 129, 88, 67、270、139、28、284、147、44、310

至于被 n n n 整除且最小的斐波那契数的序列(前 43 43 43 个)为:

1, 2, 3, 8, 5, 144, 21, 8, 144, 610, 55, 144, 13, 46368, 6765, 144, 34, 144, 2584, 832040, 21, 832040, 46368, 144, 75025, 10946, 14930352, 46368, 377, 1548008755920, 832040, 46368, 6765, 34, 102334155, 144, 4181, 2584, 317811, 832040, 6765, 46368, 701408733

1000 1000 1000 个的表见此处。我们发现,当 n = 750 n=750 n=750 时,能被 750 750 750 整除的最小的斐波那契数是:

13551125668563101951636936867148408377786010712418497242133543153221487310873528750612259354035717265300373778814347320257699257082356550045349914102924249595997483982228699287527241931811325095099642447621242200209254439920196960465321438498305345893378932585393381539093549479296194800838145996187122583354898000

该数竟是一个 314 314 314 位的斐波那契数 !

同样类似于斐波那契切入点的定义,我们可以定义一般整数 n n n 的斐波那契切入点:也就是最小的整数 k ≥ 1 k \geq 1 k1 使得正整数 n n n 整除 F k F_k Fk 。前 70 70 70一般整数 n n n 的斐波那契切入点如下(更多请查阅此处):

1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, 8, 30, 24, 12, 25, 21, 36, 24, 14, 60, 30, 24, 20, 9, 40, 12, 19, 18, 28, 30, 20, 24, 44, 30, 60, 24, 16, 12, 56, 75, 36, 42, 27, 36, 10, 24, 36, 42, 58, 60, 15, 30, 24, 48, 35, 60, 68, 18, 24, 120

我们记一般整数 n n n 的斐波那契切入点 F E P ( n ) FEP(n) FEP(n) ,现在的问题是,何时会有 F E P ( n ) = n FEP(n)=n FEP(n)=n ?也就是说,何时满足整数 n n n 整除第 n n n 个斐波那契数?我们先看下表:

n n n12345678910111213
F i F_i Fi123851442181446105514413
i i i134651286121510127

其中第三行的 i i i 即是 F E P ( n ) FEP(n) FEP(n) ,显然当 n = 1 、 5 、 12 n=1、5、12 n=1512 时, F E P ( n ) = n FEP(n)=n FEP(n)=n 。一般地,当 n = 1 、 5 、 12 、 25 、 60 、 125 、 300 、 625 、 1500 、 3125 ⋯ n=1、5、12、25、60、125、300、625、1500、3125 \cdots n=1512256012530062515003125 时, F E P ( n ) = n FEP(n)=n FEP(n)=n 。2012 年,Marques 证明了 F E P ( n ) = n FEP(n)=n FEP(n)=n 当且仅当对于某些 k ≥ 0 k\geq 0 k0 ,有 n = 5 k n=5^k n=5k n = 12 ⋅ 5 k n=12\cdot 5^k n=125k

由于 F E P ( F m ) = m FEP(F_m)=m FEP(Fm)=m 对于任意的 m > 1 m>1 m>1 成立,我们可以知道序列 { F E P ( n ) } \{FEP(n)\} {FEP(n)} 包含一切大于 2 2 2 的整数。

至于上界估计方面,一个猜测认为 F E P ( n ) ≤ 2 n FEP(n) ≤ 2n FEP(n)2n 成立。而目前我们已证明的结果为 F E P ( n ) ≤ n 2 FEP(n) ≤ n^2 FEP(n)n2

至此,我们讨论了斐波那契数列的诸多性质和猜测。对于斐波那契素数,相信在不久的将来,将会证明 F 201107 F_{201107} F201107 是一个素数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tengfei Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值