曲面局部理论介绍——从曲面的概念、基本形式到高斯曲率及其 Pthyon 计算


前言

本文尽可能详细地介绍了曲面的局部理论,并在最后通过 Python 编程来求曲面的高斯曲率

说明:第一章至第六章都是曲面的局部理论介绍,曲面入门的必读,会非常数学化,需要耐心研读。第七章为 Python 在曲面曲率计算的上的应用,同时熟悉常见曲面的曲率。虽说本文内容较多,但也不是不可研读,本人花了差不多一天时间就完成了从零到整个内容的学习理解,具体学习时间需依据读者自身的数学知识而定。


一、曲面的概念

说明:本文 R 3 \mathbb{R}^3 R3 表示欧式空间,带有内积结构。

定义1.1 从平面区域 D D D R 3 \mathbb{R}^3 R3 的映射 r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) , \bold{r}(u,v) = (x(u,v), y(u,v), z(u,v)), r(u,v)=(x(u,v),y(u,v),z(u,v)), 满足 (1) 每个分量函数是无穷可微的,(2) 向量 r u \bold{r}_u ru r v \bold{r}_v rv 线性无关,则称 r \bold{r} r R 3 \mathbb{R}^3 R3 的一个曲面 ( u , v ) (u,v) (u,v) 称为曲面的坐标参数

满足定义1.1的曲面在有些书中也被称为正则曲面

r ( u , v ) \bold{r}(u,v) r(u,v) 如上所定义,对于任意一点 ( u 0 , v 0 ) ∈ D (u_0,v_0)\in D (u0,v0)D ,易验证有下式成立 r u × r v ∣ ( u 0 , v 0 ) = ( ∂ ( y , z ) ∂ ( u , v ) , ∂ ( z , x ) ∂ ( u , v ) , ∂ ( x , y ) ∂ ( u , v ) ) ∣ ( u 0 , v 0 ) \bold{r}_u \times \bold{r}_v |_{(u_0,v_0)}=\left.\left( \frac{\partial (y,z)}{\partial (u,v)}, \frac{\partial (z,x)}{\partial (u,v)}, \frac{\partial (x,y)}{\partial (u,v)} \right) \right|_{(u_0,v_0)} ru×rv(u0,v0)=((u,v)(y,z),(u,v)(z,x),(u,v)(x,y)) (u0,v0) 曲面有两种表现形式,显示表达式形如 z = f ( x , y ) z=f(x,y) z=f(x,y) ,即 r ( x , y ) = ( x , y , f ( x , y ) ) \bold{r}(x,y)=(x,y,f(x,y)) r(x,y)=(x,y,f(x,y)) ,由上式易知 r u × r v = ( − f x    , − f y    ,    1 ) ≠ 0 , \bold{r}_u \times \bold{r}_v = (-f_x \;, -f_y \;, \;1) \neq \bold{0} , ru×rv=(fx,fy,1)=0 r u \bold{r}_u ru r v \bold{r}_v rv 线性无关。后面我们将向量中的叉乘符号 × \times × 用外微分中的楔积符号 ∧ \wedge 来替换,以便与后面的几何学相统一。

隐式表达式形如 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 ,当 F z ( x 0 , y 0 , z 0 ) ≠ 0 F_z(x_0,y_0,z_0) \neq 0 Fz(x0,y0,z0)=0 时,由隐函数定理,在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 的局部邻域 D D D 内, F ( x 0 , y 0 , z 0 ) F(x_0,y_0,z_0) F(x0,y0,z0) 有显式表达式 z = f ( x , y ) ,    x , y ∈ D ,    z 0 = f ( x 0 , y 0 ) , z=f(x,y), \; x,y\in D, \; z_0=f(x_0,y_0), z=f(x,y),x,yD,z0=f(x0,y0), 类似,当 F x ( x 0 , y 0 , z 0 ) ≠ 0 F_x(x_0,y_0,z_0) \neq 0 Fx(x0,y0,z0)=0 F y ( x 0 , y 0 , z 0 ) ≠ 0 F_y(x_0,y_0,z_0) \neq 0 Fy(x0,y0,z0)=0 时,同样可以确定曲面。所以当 ∇ F ( x 0 , y 0 , z 0 ) ≠ 0 \nabla F(x_0,y_0,z_0) \neq 0 F(x0,y0,z0)=0 时, F ( x , y , z ) F(x,y,z) F(x,y,z) ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0) 附近定义了一张曲面。

考虑曲面的不同参数表示,给定 r ( u , v ) :    D → R 3 \bold{r}(u,v): \; D \to \mathbb{R}^3 r(u,v):DR3 ,以及参数变换 σ : ( u ˉ , v ˉ ) ∈ D ˉ → ( u , v ) ∈ D , \sigma: (\bar{u},\bar{v}) \in \bar{D} \to (u,v) \in D, σ:(uˉ,vˉ)Dˉ(u,v)D, 其中 σ \sigma σ 是双射且该变换的 Jacobi 行列式满足 ∣ ∂ ( u , v ) ∂ ( u ˉ , v ˉ ) ∣ = ∣ ∂ u ( u ˉ , v ˉ ) ∂ u ˉ ∂ v ( u ˉ , v ˉ ) ∂ u ˉ ∂ u ( u ˉ , v ˉ ) ∂ v ˉ ∂ v ( u ˉ , v ˉ ) ∂ v ˉ ∣ ≠ 0. \left|\frac{\partial(u,v)}{\partial(\bar{u},\bar{v})}\right| = \left |\begin{array}{cccc} \frac{\partial u(\bar{u},\bar{v})}{\partial\bar{u}} &\frac{\partial v(\bar{u},\bar{v})}{\partial\bar{u}} \\ \frac{\partial u(\bar{u},\bar{v})}{\partial\bar{v}} &\frac{\partial v(\bar{u},\bar{v})}{\partial\bar{v}}\\ \end{array}\right| \neq 0. (uˉ,vˉ)(u,v) = uˉu(uˉ,vˉ)vˉu(uˉ,vˉ)uˉv(uˉ,vˉ)vˉv(uˉ,vˉ) =0. 这样,我们就有曲面的新参数表示 r ( u ˉ , v ˉ ) = r ∘ σ ( u ˉ , v ˉ ) = r ( u ( u ˉ , v ˉ ) , v ( u ˉ , v ˉ ) ) \bold{r}(\bar{u},\bar{v}) = \bold{r} \circ \sigma(\bar{u},\bar{v})=\bold{r}(u(\bar{u}, \bar{v}), v(\bar{u}, \bar{v})) r(uˉ,vˉ)=rσ(uˉ,vˉ)=r(u(uˉ,vˉ),v(uˉ,vˉ)) 我们记曲面为 S S S ,以后称 r = r ( u , v ) \bold{r}=\bold{r}(u,v) r=r(u,v) 是曲面的一个参数表示。下面是曲面参数表示的几个例子。

例1.1 球面的参数表示为 { x = R cos ⁡ ( u ) cos ⁡ ( v ) y = R cos ⁡ ( u ) sin ⁡ ( v ) z = R sin ⁡ ( u ) . \left\{ \begin{aligned} &x=R\cos(u)\cos(v) \\ &y=R\cos(u)\sin(v) \\ &z=R\sin(u). \end{aligned} \right. x=Rcos(u)cos(v)y=Rcos(u)sin(v)z=Rsin(u). 其中 D ˉ = { ( u , v ) : − π 2 < u < π 2 ,    0 < v < 2 π } \bar{D}=\{(u,v): -\frac{\pi}{2} <u < \frac{\pi}{2} ,\; 0<v<2\pi \} Dˉ={(u,v):2π<u<2π,0<v<2π}

例1.2 环面可视为 x z xz xz 平面上的一个圆周绕 z z z 轴旋转而成的曲面,在 x 轴上取离原点为 R R R 的点为圆心,以 r ( r < R ) r (r<R) r(r<R) 为半径作圆, { x = R + r cos ⁡ ( u ) , z = r sin ⁡ ( u ) , \left\{ \begin{aligned} &x=R+r\cos(u), \\ &z=r\sin(u), \end{aligned} \right. {x=R+rcos(u),z=rsin(u), 然后将此圆绕 z z z 轴旋转,得环面 { x ( u , v ) = ( R + r cos ⁡ ( u ) ) cos ⁡ ( v ) y ( u , v ) = ( R + r cos ⁡ ( u ) ) sin ⁡ ( v ) z ( u , v ) = R sin ⁡ ( u ) . \left\{ \begin{aligned} &x(u,v)=(R+r\cos(u))\cos(v) \\ &y(u,v)=(R+r\cos(u))\sin(v)\\ &z(u,v)=R\sin(u). \end{aligned} \right. x(u,v)=(R+rcos(u))cos(v)y(u,v)=(R+rcos(u))sin(v)z(u,v)=Rsin(u). 一般地,我们有旋转曲面的参数表示:

例1.3 x z xz xz 平面上与 z z z 轴不相交的参数曲线 x = f ( u ) ,      z = g ( u ) x=f(u), \;\; z=g(u) x=f(u),z=g(u) z z z 轴旋转得到旋转曲面 r ( u , v ) = ( f ( u ) cos ⁡ ( v ) , f ( u ) sin ⁡ ( v ) , g ( u ) ) . \bold{r}(u,v)=(f(u)\cos(v), f(u)\sin(v), g(u)). r(u,v)=(f(u)cos(v),f(u)sin(v),g(u)).

例1.4 圆柱面的参数式为 r ( u , v ) = ( a cos ⁡ ( u ) , a sin ⁡ ( u ) , b v ) \bold{r}(u,v)=(a\cos(u), a\sin(u), bv) r(u,v)=(acos(u),asin(u),bv) 其中 a > 0 , b a>0, b a>0,b 都是常数。若规定 − π < u < π -\pi<u<\pi π<u<π − ∞ < v < + ∞ -\infty<v<+\infty <v<+ ,则表示圆柱面上除去直线 x = − 1 , y = 0 , z = b v x=-1, y=0, z=bv x=1,y=0,z=bv 所得到的部分。


二、切平面与法向量

考虑曲面 S S S ,参数表示为 r ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) \bold{r}(u,v)=(x(u,v), y(u,v), z(u,v)) r(u,v)=(x(u,v),y(u,v),z(u,v)) ( u , v ) ∈ D (u,v) \in D (u,v)D 。固定 u = a u=a u=a ,曲线 r ( a , v ) \bold{r}(a,v) r(a,v) v = b v=b v=b 处的切向量是 r v ( a , b ) = d r d v ( a , b ) \bold{r}_v(a,b)=\frac{d\bold{r}}{dv}(a,b) rv(a,b)=dvdr(a,b) 。同样固定 v = b v=b v=b ,有 u = a u=a u=a 处的切向量是 r u ( a , b ) = d r d u ( a , b ) \bold{r}_u(a,b)=\frac{d\bold{r}}{du}(a,b) ru(a,b)=dudr(a,b)

由曲面的定义知, r u ( a , b ) \bold{r}_u(a,b) ru(a,b) r u ( a , b ) \bold{r}_u(a,b) ru(a,b) 线性无关,因此 r u ( a , b ) \bold{r}_u(a,b) ru(a,b) r v ( a , b ) \bold{r}_v(a,b) rv(a,b) 张成与曲面 S S S 相切于 P 0 = P ( a , b ) P_0 = P(a,b) P0=P(a,b) 点的一张平面,称为曲面 S S S P 0 P_0 P0 点的切平面,记为 T P 0 S T_{P_0}S TP0S

P 0 P_0 P0 点与切平面 T P 0 S T_{P_0}S TP0S 垂直的直线称为曲面在该点的法线 r u ( a , b ) ∧ r v ( a , b ) \bold{r}_u(a,b)\wedge\bold{r}_v(a,b) ru(a,b)rv(a,b) 是曲面 S S S P 0 P_0 P0 点的法向量,且 { P 0 :    r u    , r v    , r u ∧ r v } \{ P_0: \; \bold{r}_u \;,\bold{r}_v \;, \bold{r}_u \wedge\bold{r}_v\} {P0:ru,rv,rurv} 构成 R 3 \mathbb{R}^3 R3 的一个自然定向的标架

下面我们给出曲面 S S S 的切平面与参数选取的关系。设 σ : ( u ˉ , v ˉ ) ∈ D ˉ → ( u , v ) ∈ D \sigma: (\bar{u}, \bar{v}) \in \bar{D} \to (u,v) \in D σ:(uˉ,vˉ)Dˉ(u,v)D 是参数变换,则基变换矩阵就是参数变换的 Jacobi 矩阵 ∂ ( u , v ) ∂ ( u ˉ , v ˉ ) \frac{\partial (u,v)}{\partial (\bar{u},\bar{v})} (uˉ,vˉ)(u,v),即 ( r u ˉ r v ˉ ) = ( ∂ u ∂ u ˉ ∂ v ∂ u ˉ ∂ u ∂ v ˉ ∂ v ∂ v ˉ ) ( r u r v ) \left( \begin{aligned} \bold{r}_{\bar{u}} \\ \bold{r}_{\bar{v}} \end{aligned} \right) = \left( \begin{array}{cc} %该矩阵一共3列,每一列都居中放置 \frac{ \partial u}{ \partial \bar{u}} & \frac{ \partial v}{ \partial \bar{u}} \\ %第一行元素 \frac{ \partial u}{ \partial \bar{v}} & \frac{ \partial v}{ \partial \bar{v}} \\ %第二行元素 \end{array} \right) \left( \begin{aligned} \bold{r}_{u} \\ \bold{r}_{v} \end{aligned} \right) (ruˉrvˉ)=(uˉuvˉuuˉvvˉv)(rurv) 特别地,在 P 0 P_0 P0 点, r u ˉ ∧ r v ˉ = ∂ ( u , v ) ∂ ( u ˉ , v ˉ ) r u ∧ r v ≠ 0 \bold{r}_{\bar{u}} \wedge \bold{r}_{\bar{v}}= \frac{\partial (u,v)}{\partial (\bar{u},\bar{v})} \bold{r}_{u} \wedge \bold{r}_{v} \neq 0 ruˉrvˉ=(uˉ,vˉ)(u,v)rurv=0 。于是我们有

性质2.1 曲面的切平面和法线与曲面参数的选取无关。

容易看到,当 ∂ ( u , v ) ∂ ( u ˉ , v ˉ ) > 0 \frac{\partial (u,v)}{\partial (\bar{u},\bar{v})}>0 (uˉ,vˉ)(u,v)>0 时, r u ˉ ∧ r v ˉ \bold{r}_{\bar{u}}\wedge \bold{r}_{\bar{v}} ruˉrvˉ r u ∧ r v \bold{r}_u \wedge \bold{r}_v rurv 的方向相同;当 ∂ ( u , v ) ∂ ( u ˉ , v ˉ ) < 0 \frac{\partial (u,v)}{\partial (\bar{u},\bar{v})}<0 (uˉ,vˉ)(u,v)<0 时, r u ˉ ∧ r v ˉ \bold{r}_{\bar{u}}\wedge \bold{r}_{\bar{v}} ruˉrvˉ r u ∧ r v \bold{r}_u \wedge \bold{r}_v rurv 的方向相反。

因此,当 ∂ ( u , v ) ∂ ( u ˉ , v ˉ ) > 0 \frac{\partial (u,v)}{\partial (\bar{u},\bar{v})}>0 (uˉ,vˉ)(u,v)>0 时,相应参数变换称为同向参数变换;反之则称为反向参数变换

我们再次考查 r \bold{r} r 的微分 d r = r u ( u , v ) d u + r v ( u , v ) d v d\bold{r} = \bold{r}_u(u,v)du + \bold{r}_v(u,v)dv dr=ru(u,v)du+rv(u,v)dv 其中 d u , d v du, dv du,dv 恰好是切向量关于自然基底 { r u , r v } \{ \bold{r}_u, \bold{r}_v \} {ru,rv} 的分量。

现将 d u , d v du, dv du,dv 视为独立于 u , v u,v u,v 的其他两个自变量,则微分式 r u ( u , v ) d u + r v ( u , v ) d v \bold{r}_u(u,v)du + \bold{r}_v(u,v)dv ru(u,v)du+rv(u,v)dv 可以表示 T P S T_PS TPS 里的任意一个切向量。考虑下述定理2.2:

定理2.2 V V V n n n 维向量空间,取一组基为 { α 1 , . . . , α n } \{ \alpha_1, ..., \alpha_n \} {α1,...,αn} ,其对偶空间 V ∗ V^* V 的基为 f 1 , . . . , f n f_1,...,f_n f1,...,fn ,则 α = ∑ i = 1 n f i ( α ) α i , ∀ α ∈ V , f = ∑ i = 1 n f ( α i ) f i , ∀ f ∈ V ∗ \begin{aligned} &\alpha = \sum_{i=1}^{n} f_i(\alpha)\alpha_i, \quad \forall \alpha \in V, \\ &f = \sum_{i=1}^{n} f(\alpha_i)f_i, \quad \forall f \in V^* \end{aligned} α=i=1nfi(α)αi,αV,f=i=1nf(αi)fi,fV 由于 T P S T_PS TPS 的基为 { r u , r v } \{\bold{r}_u, \bold{r}_v\} {ru,rv} ,我们设 { f 1 , f 2 } \{ f_1, f_2 \} {f1,f2} 为对偶空间 T P ∗ S T_P^*S TPS 中的基,则对任意的 v ∈ T P S \bold{v}\in T_PS vTPS ,由定理2.2有 v = f 1 ( v ) r u + f 2 ( v ) r v \bold{v} = f_1(\bold{v})\bold{r}_u + f_2(\bold{v})\bold{r}_v v=f1(v)ru+f2(v)rv 对比微分式 r u ( u , v ) d u + r v ( u , v ) d v \bold{r}_u(u,v)du + \bold{r}_v(u,v)dv ru(u,v)du+rv(u,v)dv 可以表示 v \bold{v} v 即知, d u , d v du, dv du,dv 可以看作切空间 T P S T_PS TPS 上的线性函数,即 d u ( v ) = f 1 ( v ) , d v ( v ) = f 2 ( v ) . du(\bold{v})=f_1(\bold{v}), \\ dv(\bold{v})=f_2(\bold{v}). du(v)=f1(v),dv(v)=f2(v). 因此, { d u , d v } \{du, dv\} {du,dv} 构成 T P ∗ S T_P^*S TPS 空间中的基,即为 { r u , r v } \{ \bold{r}_u, \bold{r}_v \} {ru,rv}对偶基。在上述 v \bold{v} v 的展开式中,特别地取 v = r u \bold{v}=\bold{r}_u v=ru ,则得 r u = d u ( r u ) r u + d v ( r u ) r v \bold{r}_u = du(\bold{r}_u)\bold{r}_u+dv(\bold{r}_u)\bold{r}_v ru=du(ru)ru+dv(ru)rv 以及取 v = r v \bold{v}=\bold{r}_v v=rv ,则得 r v = d u ( r v ) r u + d v ( r v ) r v \bold{r}_v = du(\bold{r}_v)\bold{r}_u+dv(\bold{r}_v)\bold{r}_v rv=du(rv)ru+dv(rv)rv 从而得出 d u ( r u ) = d v ( r v ) = 1 du(\bold{r}_u)=dv(\bold{r}_v)=1 du(ru)=dv(rv)=1 d u ( r v ) = d v ( r u ) = 0 du(\bold{r}_v)=dv(\bold{r}_u)=0 du(rv)=dv(ru)=0

实际上,任一切向量 v \bold{v} v 在切空间 T P S T_PS TPS 的基 { r u , r v } \{ \bold{r}_u, \bold{r}_v \} {ru,rv} 下的坐标为 ( d u ( v ) , d v ( v ) ) (du(\bold{v}), dv(\bold{v})) (du(v),dv(v)) ,其中 d u , d v du, dv du,dv 为对偶空间 T P ∗ S T_P^*S TPS 中的一组基。


三、曲面的第一基本形式

S S S R 3 \mathbb{R}^3 R3 的曲面, r = r ( u , v ) \bold{r}=\bold{r}(u,v) r=r(u,v) 是它的参数表示,则 S S S 的任何一个切向量 v \bold{v} v 都可以表示成如下形式 v = λ r u + μ r v \bold{v} = \lambda \bold{r}_u + \mu \bold{r}_v v=λru+μrv < v ,    v > = λ 2 < r u ,    r u > + 2 λ μ < r u ,    r v > + μ 2 < r v ,    r v > <\bold{v},\;\bold{v}>=\lambda^2 <\bold{r}_u, \; \bold{r}_u> + 2\lambda\mu<\bold{r}_u, \; \bold{r}_v> + \mu^2<\bold{r}_v, \; \bold{r}_v> <v,v>=λ2<ru,ru>+2λμ<ru,rv>+μ2<rv,rv>

E = < r u ,    r u > E=<\bold{r}_u, \; \bold{r}_u> E=<ru,ru> F = < r u ,    r v > F = <\bold{r}_u, \; \bold{r}_v> F=<ru,rv> G = < r v ,    r v > G=<\bold{r}_v, \; \bold{r}_v> G=<rv,rv> ,考虑 S S S 上一曲线 r ( t ) = r ( u ( t ) , v ( t ) ) \bold{r}(t)=\bold{r}(u(t),v(t)) r(t)=r(u(t),v(t)) 其切向量为 d r ( t ) d t = r u u ′ ( t ) + r v v ′ ( t ) \frac{d\bold{r}(t)}{dt} = \bold{r}_u u'(t) + \bold{r}_v v'(t) dtdr(t)=ruu(t)+rvv(t) 曲线在 a < t ′ < t a<t'<t a<t<t 间的弧长为 s = ∫ a t ∣ d r ( t ′ ) d t ′ ∣ d t ′ = ∫ a t E ( d u d t ′ ) 2 + 2 F d u d t ′ d v d t ′ + G ( d v d t ′ ) 2    d t ′ \begin{aligned} s &= \int_{a}^{t} \left| \frac{d\bold{r}(t')}{dt'} \right| dt' \\ &=\int_{a}^{t} \sqrt{E\left( \frac{du}{dt'} \right)^2+2F\frac{du}{dt'}\frac{dv}{dt'} + G\left( \frac{dv}{dt'} \right)^2} \;dt' \end{aligned} s=at dtdr(t) dt=atE(dtdu)2+2Fdtdudtdv+G(dtdv)2 dt 因此, I ≜ d s 2 = E d u ⋅ d u + 2 F d u ⋅ d v + G d v ⋅ d v I \triangleq ds^2 = Edu\cdot du+2Fdu \cdot dv +Gdv\cdot dv Ids2=Edudu+2Fdudv+Gdvdv 称为曲面 S S S第一基本形式

定理3.1 曲面 S S S 的第一基本形式与参数选取无关。

结合 d r = r u d u + r v d v d\bold{r}=\bold{r}_u du+\bold{r}_v dv dr=rudu+rvdv ,第一基本形式改写为 I = E d u d u + 2 F d u d v + G d v d v = < r u ,    r u > d u d v + 2 < r u ,    r v > d u d v + < r v ,    r v > d v d v = < d r , d r > \begin{aligned} I &= Edudu+2Fdudv +Gdvdv \\ &= <\bold{r}_u, \; \bold{r}_u>dudv+ 2<\bold{r}_u, \; \bold{r}_v>dudv+<\bold{r}_v, \; \bold{r}_v>dvdv \\ &= <d\bold{r}, d\bold{r}> \end{aligned} I=Edudu+2Fdudv+Gdvdv=<ru,ru>dudv+2<ru,rv>dudv+<rv,rv>dvdv=<dr,dr> 由一阶微分的形式不变性也可以知道, I I I 与参数的选取无关。

回忆一下合同变换,设 T T T 是一个正交矩阵,令 T ( P ) = P ⋅ T + P 0 \mathfrak{T}(P) = P\cdot T+P_0 T(P)=PT+P0 ,则 T \mathfrak{T} T 是一个合同变换。常见的旋转、平移、反射变换都是合同变换。我们不加证明地给出定理3.2。

定理3.2 曲面的第一基本形式在 R 3 \mathbb{R}^3 R3 的合同变换下不变。

下面是一些例子。

例3.3 对平面 r ( u , v ) = ( u , v , c ) \bold{r}(u,v)= (u,v,c) r(u,v)=(u,v,c) ( c c c 系常数) 而言, r u = ( 1 , 0 , 0 ) \bold{r}_u=(1,0,0) ru=(1,0,0) r v = ( 0 , 1 , 0 ) \bold{r}_v=(0,1,0) rv=(0,1,0) ,故第一基本形式为 I = d u d u + d v d v I=dudu+dvdv I=dudu+dvdv

例3.4 (柱面) 设 C : ( x ( u ) , y ( u ) ) C: (x(u), y(u)) C:(x(u),y(u)) x y xy xy 平面的一条正则参数曲线,让 C C C 沿 z z z 轴方向移动,得曲面 r ( u , v ) = ( x ( u ) , y ( u ) , v ) \bold{r}(u,v) = (x(u), y(u), v) r(u,v)=(x(u),y(u),v) 被称为柱面。由于 r u = ( x ′ , y ′ , 0 ) \bold{r}_u=(x',y',0) ru=(x,y,0) r v = ( 0 , 0 , 1 ) \bold{r}_v=(0,0,1) rv=(0,0,1) ,则柱面的第一基本形式为 I = ( ( x ′ ) 2 + ( y ′ ) 2 ) d u d u + d v d v I = ((x')^2+(y')^2)dudu+dvdv I=((x)2+(y)2)dudu+dvdv 若取 u u u C C C 的弧长参数,这时 ∥ r u ∥ = 1 \parallel\bold{r}_u \parallel=1 ru∥=1 ,故 I = d u d u + d v d v I = dudu+dvdv I=dudu+dvdv 例3.5 (球面) 半径为 R R R 的球面为 r ( θ , ϕ ) = ( R cos ⁡ ( θ ) cos ⁡ ( ϕ ) , R cos ⁡ ( θ ) sin ⁡ ( ϕ ) , R sin ⁡ ( θ ) ) \bold{r}(\theta, \phi) = (R\cos(\theta)\cos(\phi), R\cos(\theta)\sin(\phi), R\sin(\theta)) r(θ,ϕ)=(Rcos(θ)cos(ϕ),Rcos(θ)sin(ϕ),Rsin(θ)) 其坐标切向量为 r θ = ( − R sin ⁡ ( θ ) cos ⁡ ( ϕ ) , − R sin ⁡ ( θ ) sin ⁡ ( ϕ ) , R cos ⁡ ( θ ) ) r ϕ = ( − R cos ⁡ ( θ ) sin ⁡ ( ϕ ) , R cos ⁡ ( θ ) cos ⁡ ( ϕ ) , 0 ) \begin{aligned} \bold{r}_{\theta} &=(-R\sin(\theta)\cos(\phi), -R\sin(\theta)\sin(\phi), R\cos(\theta)) \\ \bold{r}_{\phi} &=(-R\cos(\theta)\sin(\phi), R\cos(\theta)\cos(\phi), 0) \end{aligned} rθrϕ=(Rsin(θ)cos(ϕ),Rsin(θ)sin(ϕ),Rcos(θ))=(Rcos(θ)sin(ϕ),Rcos(θ)cos(ϕ),0) 故而 I = R 2 ( d θ d θ + cos ⁡ 2 ( θ ) d ϕ d ϕ ) I = R^2 (d\theta d\theta + \cos^2(\theta)d\phi d\phi) I=R2(dθdθ+cos2(θ)dϕdϕ)


四 、曲面的第二基本形式

定义4.1 设曲面 S S S 的参数表示为 r = r ( u , v ) \bold{r}=\bold{r}(u,v) r=r(u,v) ,这时 n = r u ∧ r v ∣ r u ∧ r v ∣ \bold{n}=\frac{\bold{r}_u \wedge \bold{r}_v}{|\bold{r}_u \wedge \bold{r}_v|} n=rurvrurv S S S 的单位法向量,曲面 S S S第二基本形式定义为 I I = − < d r ,    d n > II=-<d\bold{r}, \;d\bold{n}> II=<dr,dn> n \bold{n} n 的定义有 < r u ,    n > = 0 <\bold{r}_u, \;\bold{n}>=0 <ru,n>=0 < r v ,    n > = 0 <\bold{r}_v, \;\bold{n}>=0 <rv,n>=0 ,对这两个等式求导得 L ≜ < r u u ,    n > = − < r u ,    n u > M ≜ < r u v ,    n > = − < r u ,    n v > = − < r v ,    n u > N ≜ < r v v ,    n > = − < r v ,    n v > \begin{aligned} L &\triangleq <\bold{r}_{uu}, \;\bold{n}> = -<\bold{r}_u, \;\bold{n}_u> \\ M &\triangleq <\bold{r}_{uv}, \;\bold{n}> = -<\bold{r}_u, \;\bold{n}_v> =-<\bold{r}_v, \;\bold{n}_u> \\ N &\triangleq <\bold{r}_{vv}, \;\bold{n}> = -<\bold{r}_v, \;\bold{n}_v> \end{aligned} LMN<ruu,n>=<ru,nu><ruv,n>=<ru,nv>=<rv,nu><rvv,n>=<rv,nv> 第二基本形式可表示为 I I = − < d r ,    d n > = − < r u d u + r v d v ,    n u d u + n v d v > = L d u d u + 2 M d u d v + N d v d v \begin{aligned} II &= -<d\bold{r}, \;d\bold{n}> \\ &=-<\bold{r}_udu+\bold{r}_vdv, \;\bold{n}_udu+\bold{n}_vdv> \\ &= Ldudu+2Mdudv+Ndvdv \end{aligned} II=<dr,dn>=<rudu+rvdv,nudu+nvdv>=Ldudu+2Mdudv+Ndvdv 第二基本形式实际上反映了曲面的形状。

例4.2 探讨平面与柱面的第二基本形式。

平面 r ( u , v ) = ( u , v , c ) \bold{r}(u,v) = (u,v,c) r(u,v)=(u,v,c) n = ( 0 , 0 , 1 ) \bold{n}=(0,0,1) n=(0,0,1) I I = − < d r ,    d n > = 0 II= -<d\bold{r}, \;d\bold{n}>=0 II=<dr,dn>=0

柱面 r ( u , v ) = ( x ( u ) , y ( u ) , v ) \bold{r}(u,v)=(x(u), y(u), v) r(u,v)=(x(u),y(u),v) ,其中 ( x ( u ) , y ( u ) ) (x(u),y(u)) (x(u),y(u)) 为平面曲线, u u u 是该曲线的弧长参数,则 r u u = ( x u u , y u u , 0 ) , r u v = ( 0 , 0 , 0 ) , r v v = ( 0 , 0 , 0 ) , n = ( y u , − x u , 0 ) \begin{aligned} &\bold{r}_{uu} =(x_{uu},y_{uu},0), \\ &\bold{r}_{uv} =(0,0,0), \\ &\bold{r}_{vv} =(0,0,0), \\ &\bold{n} = (y_u, -x_u,0) \end{aligned} ruu=(xuu,yuu,0),ruv=(0,0,0),rvv=(0,0,0),n=(yu,xu,0) κ \kappa κ 为平面曲线 ( x ( u ) , y ( u ) ) (x(u), y(u)) (x(u),y(u)) 的曲率,即 κ = − < r u u ,    n > = − x u u y u + x u y u u \kappa=-<\bold{r}_{uu}, \; \bold{n}>=-x_{uu}y_u+x_uy_{uu} κ=<ruu,n>=xuuyu+xuyuu ,我们有 L = < r u u ,    n > = − κ , M = N = 0. L=<\bold{r}_{uu}, \;\bold{n}>=-\kappa, \quad M=N=0. L=<ruu,n>=κ,M=N=0. 故柱面的第二基本形式为 I I = − κ d u d u II=-\kappa dudu II=κdudu 特别,当 ( x ( u ) , y ( u ) ) (x(u), y(u)) (x(u),y(u)) 是半径为 R R R 的圆时, κ = 1 R \kappa=\frac{1}{R} κ=R1 ,此时柱面的第二基本形式为 I I = − 1 R d u d u II = -\frac{1}{R}dudu II=R1dudu 上述结果表明,虽然平面和柱面第一基本形式相同,但第二基本形式不同,表现为形状不同。

例4.3 容易验证半径为 R R R 的球的第二基本形式为 I I = R ( d θ d θ + cos ⁡ 2 ( θ ) d ϕ d ϕ ) II=R(d\theta d\theta+\cos^2(\theta)d\phi d\phi) II=R(dθdθ+cos2(θ)dϕdϕ) 其中, n \bold{n} n 取为 ( − cos ⁡ ( θ ) cos ⁡ ( ϕ ) , − cos ⁡ ( θ ) sin ⁡ ( ϕ ) , − sin ⁡ ( ϕ ) ) (-\cos(\theta)\cos(\phi), -\cos(\theta)\sin(\phi), -\sin(\phi)) (cos(θ)cos(ϕ),cos(θ)sin(ϕ),sin(ϕ))

本节最后给出性质4.4。

性质4.4 曲面的第二基本形式 I I = L d u d u + 2 M d u d v + N d v d v II = Ldudu+2Mdudv+Ndvdv II=Ldudu+2Mdudv+Ndvdv 正定或负定的点,即 L N − M 2 > 0 LN-M^2>0 LNM2>0 的点的附近,曲面的形状是凸的(或凹的,由法向选取决定),在 L N − M 2 < 0 LN-M^2<0 LNM2<0 的点的附近,曲面是马鞍型的。


五、法曲率与 Weingarten 变换

我们不加证明地定义曲面的法曲率。

曲面 S S S 沿 P 0 P_0 P0 处任意非零切向量 ω = ξ r u + η r v \omega=\xi \bold{r}_u + \eta \bold{r}_v ω=ξru+ηrv法曲率定义为 κ n ( ω ) = I I ( ω , ω ) I ( ω , ω ) = L ξ 2 + 2 M ξ η + N 2 η 2 E ξ 2 + 2 F ξ η + G 2 η 2 \kappa_n(\omega) = \frac{II(\omega,\omega)}{I(\omega,\omega)} = \frac{L\xi^2+2M\xi\eta+N^2\eta^2}{E\xi^2+2F\xi\eta+G^2\eta^2} κn(ω)=I(ω,ω)II(ω,ω)=Eξ2+2Fξη+G2η2Lξ2+2Mξη+N2η2

例5.1 半径为 R R R 的球的法曲率为 1 R \frac{1}{R} R1

这是因为 I I = I ⋅ 1 R II = I \cdot \frac{1}{R} II=IR1 。这说明,球面沿任何方向的弯曲程度是一样的。

例5.2 探讨平面与柱面的法曲率。

平面法向量为常向量,故 d n = 0 d\bold{n}=0 dn=0 I I = 0 II=0 II=0

设柱面 r ( u , v ) = ( R cos ⁡ ( u R ) , R sin ⁡ ( u R ) , v ) \bold{r}(u,v)=\left( R\cos\left( \frac{u}{R} \right), R\sin\left( \frac{u}{R} \right) , v \right) r(u,v)=(Rcos(Ru),Rsin(Ru),v) 。由第一基本形式 I = d u d u + d v d v I=dudu+dvdv I=dudu+dvdv 以及第二基本形式 I I = − 1 R d u d u II=-\frac{1}{R}dudu II=R1dudu ,结合 r u \bold{r}_u ru r v \bold{r}_v rv 为正交的单位向量,对任何单位切向量 ω \omega ω (下式中 θ \theta θ ω \omega ω r u \bold{r}_u ru 的夹角) ω = cos ⁡ ( θ ) r u + sin ⁡ ( θ ) r v \omega=\cos(\theta)\bold{r}_u+\sin(\theta)\bold{r}_v ω=cos(θ)ru+sin(θ)rv 易知该柱面法曲率为 κ n ( ω ) = L cos ⁡ 2 ( θ ) + 2 M cos ⁡ ( θ ) sin ⁡ ( θ ) + N sin ⁡ 2 ( θ ) E cos ⁡ 2 ( θ ) + 2 F cos ⁡ ( θ ) sin ⁡ ( θ ) + G sin ⁡ 2 ( θ ) = − 1 R cos ⁡ 2 ( θ ) cos ⁡ 2 ( θ ) + sin ⁡ 2 ( θ ) = − 1 R cos ⁡ 2 ( θ ) \begin{aligned} \kappa_n(\omega) &= \frac{L\cos^2(\theta)+2M\cos(\theta)\sin(\theta)+N\sin^2(\theta)} {E\cos^2(\theta)+2F\cos(\theta)\sin(\theta)+G\sin^2(\theta)} \\ &=\frac{-\frac{1}{R}\cos^2(\theta)}{\cos^2(\theta)+\sin^2(\theta)} \\ &= -\frac{1}{R}\cos^2(\theta) \end{aligned} κn(ω)=Ecos2(θ)+2Fcos(θ)sin(θ)+Gsin2(θ)Lcos2(θ)+2Mcos(θ)sin(θ)+Nsin2(θ)=cos2(θ)+sin2(θ)R1cos2(θ)=R1cos2(θ) 下面定义高斯映射。

定义5.3 设曲面 S S S 的参数表示为 r = r ( u , v ) \bold{r}=\bold{r}(u,v) r=r(u,v) ,单位法向量为 n ( u , v ) \bold{n}(u,v) n(u,v) ,单位球面记为 S 2 S^2 S2 ,称映射 g : S → S 2 , r ( u , v ) ↦ n ( u , v ) , g: \quad S \to S^2 , \\ \bold{r}(u,v) \mapsto \bold{n}(u,v) , g:SS2,r(u,v)n(u,v), 为曲面 S S S高斯映射

高斯映射 g g g 沿曲线 ( u ( t ) , v ( t ) ) (u(t), v(t)) (u(t),v(t)) 的导数为 d n ( t ) d t = n u d u d t + n v d v d t \frac{d\bold{n}(t)}{dt} = \bold{n}_u \frac{du}{dt} + \bold{n}_v \frac{dv}{dt} dtdn(t)=nudtdu+nvdtdv 由于 < d n ( t ) d t ,    n > = 0 <\frac{d\bold{n}(t)}{dt} , \; \bold{n}> =0 <dtdn(t),n>=0 ,得出 d n ( t ) d t \frac{d\bold{n}(t)}{dt} dtdn(t) S S S 的切向量,从而 n u \bold{n}_u nu n v \bold{n}_v nv 都是切向量。这表明, ( d u d t , d v d t ) → d n d t = n u d u d t + n v d v d t \left( \frac{du}{dt}, \frac{dv}{dt} \right) \to \frac{d\bold{n}}{dt} = \bold{n}_u \frac{du}{dt} +\bold{n}_v \frac{dv}{dt} (dtdu,dtdv)dtdn=nudtdu+nvdtdv 是切向量之间的一个对应。因此,可定义一个切平面到另一个切平面的线性变换 W : T P S → T P S , v = λ r u + μ r v ↦ W ( v ) = − ( λ n u + μ n v ) \begin{aligned} \mathfrak{W}: \quad &T_PS \to T_PS, \\ &\bold{v}=\lambda\bold{r}_u+\mu\bold{r}_v \mapsto \mathfrak{W}(\bold{v})=-(\lambda\bold{n}_u+\mu\bold{n}_v) \end{aligned} W:TPSTPS,v=λru+μrvW(v)=(λnu+μnv) W \mathfrak{W} W 被称为 Weingarten 变换

Weingarten 变换即是将切向量 v \bold{v} v 的表示由切平面的基 { r u ,    r v } \{ \bold{r}_u, \; \bold{r}_v \} {ru,rv} 变换为 { n u ,    n v } \{ \bold{n}_u, \; \bold{n}_v \} {nu,nv} ,系数变为原来系数的相反数。

性质5.4 Weingarten 变换与曲面的参数选取无关。

性质5.5 对曲面 S S S 的任意单位切向量 v \bold{v} v ,曲面 S S S 沿 v \bold{v} v 方向的法曲率为 κ n ( v ) = < W ( v ) ,    v > \kappa_n(\bold{v}) = <\mathfrak{W}(\bold{v}), \; \bold{v}> κn(v)=<W(v),v> 证明 不妨设 r u \bold{r}_u ru r v \bold{r}_v rv 为单位正交向量 (可以通过斯密特正交化而得) ,令 v = λ r u + μ r v \bold{v} = \lambda \bold{r}_u+\mu \bold{r}_v v=λru+μrv。则 < W ( v ) ,    v > = − < λ n u + μ n v ,    λ r u + μ r v > = λ 2 L + 2 λ μ M + μ 2 N = κ n ( v ) \begin{aligned} <\mathfrak{W(\bold{v})}, \; \bold{v}> &= -<\lambda \bold{n}_u+\mu \bold{n}_v , \; \lambda \bold{r}_u+\mu \bold{r}_v> \\ &= \lambda^2L+2\lambda\mu M +\mu^2N \\ &= \kappa_n(\bold{v}) \end{aligned} <W(v),v>=<λnu+μnv,λru+μrv>=λ2L+2λμM+μ2N=κn(v) 其中, E = < r u ,    r u > = 1 E=<\bold{r}_u, \; \bold{r}_u>=1 E=<ru,ru>=1 F = < r u ,    r v > = 0 F=<\bold{r}_u, \; \bold{r}_v>=0 F=<ru,rv>=0 G = < r v ,    r v > = 1 G=<\bold{r}_v, \; \bold{r}_v>=1 G=<rv,rv>=1 λ 2 + μ 2 = 1 \lambda^2+\mu^2=1 λ2+μ2=1

定理5.6 Weingarten 变换是曲面切平面到自身的自共轭变换,即 ∀    v \forall \; \bold{v} v, w ∈ T P S \bold{w} \in T_PS wTPS < W ( v ) ,    w > = < v ,    W ( w ) > <\mathfrak{W(\bold{v})}, \; \bold{w}> = <\bold{v}, \; \mathfrak{W(\bold{w})}> <W(v),w>=<v,W(w)> 易知,Weingarten 变换的两个特征值为实数。


六、主曲率与高斯曲率

P ∈ S P\in S PS ,设 κ \kappa κ 为 Weingarten 变换的一个特征值, v \bold{v} v 是相应的单位特征向量,由 < W ( v ) ,    v > = < κ v ,    v > = κ <\mathfrak{W(\bold{v})}, \; \bold{v}> =<\kappa \bold{v}, \; \bold{v}> = \kappa <W(v),v>=<κv,v>=κ 以及性质5.5知, κ \kappa κ 是曲面沿切方向 v \bold{v} v 的法曲率。我们把 Weingarten 变换在 P P P 点的两个特征值称为曲面 S S S P P P 点的主曲率。特征值对应的两个实特征向量称为曲面在点 P P P主方向

当两个主曲率不相等时 ( W \mathfrak{W} W 有两个不同的特征值时),相应的两个主方向完全确定,且相互正交。当两个主曲率相等时,主方向不能唯一确定,此时曲面在该点任意切向都是主方向 (后面将给出说明)。

下面计算曲面的主曲率,得先求 Weingarten 变换在坐标切向量下的系数矩阵。令 S S S 的参数表示为 r ( u , v ) \bold{r}(u,v) r(u,v) ,在切平面的基 { r u ,    r v } \{\bold{r}_u , \; \bold{r}_v\} {ru,rv} 下 Weingarten 变换的系数矩阵设为 ( a b c d ) \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) (acbd) 则有 W ( r u ) = − n u = a r u + b r v W ( r v ) = − n v = c r u + d r v \begin{aligned} &\mathfrak{W(\bold{r}_u)}=-\bold{n}_u=a \bold{r}_u+b \bold{r}_v \\ &\mathfrak{W(\bold{r}_v)}=-\bold{n}_v=c \bold{r}_u+d \bold{r}_v \end{aligned} W(ru)=nu=aru+brvW(rv)=nv=cru+drv < − n u ,    r u > = a < r u ,    r u > + b < r v ,    r u > <-\bold{n}_u, \; \bold{r}_u>=a<\bold{r}_u, \; \bold{r}_u>+b<\bold{r}_v, \; \bold{r}_u> <nu,ru>=a<ru,ru>+b<rv,ru> L = a E + b F L= a E+ b F L=aE+bF < − n u ,    r v > = a < r u ,    r v > + b < r v ,    r v > <-\bold{n}_u, \; \bold{r}_v>=a<\bold{r}_u, \; \bold{r}_v>+b<\bold{r}_v, \; \bold{r}_v> <nu,rv>=a<ru,rv>+b<rv,rv> M = a F + b G M=aF+bG M=aF+bG < − n v ,    r u > = c < r u ,    r u > + d < r v ,    r u > <-\bold{n}_v, \; \bold{r}_u>=c<\bold{r}_u, \; \bold{r}_u>+d<\bold{r}_v, \; \bold{r}_u> <nv,ru>=c<ru,ru>+d<rv,ru> M = c E + d F M=cE+dF M=cE+dF < − n v ,    r v > = c < r u ,    r v > + d < r v ,    r v > <-\bold{n}_v, \; \bold{r}_v>=c<\bold{r}_u, \; \bold{r}_v>+d<\bold{r}_v, \; \bold{r}_v> <nv,rv>=c<ru,rv>+d<rv,rv> N = c F + d G N=cF+dG N=cF+dG 联立上面两个方程组,求得 a = L G − M F E G − F 2 , b = M E − L F E G − F 2 c = M G − N F E G − F 2 , d = N E − M F E G − F 2 \begin{aligned} a=\frac{LG-MF}{EG-F^2}, \quad & b=\frac{ME-LF}{EG-F^2} \\ c=\frac{MG-NF}{EG-F^2}, \quad & d=\frac{NE-MF}{EG-F^2} \end{aligned} a=EGF2LGMF,c=EGF2MGNF,b=EGF2MELFd=EGF2NEMF 因此 Weingarten 变换的系数矩阵为 ( a b c d ) = ( L M M N ) ( E F F G ) − 1 = 1 E G − F 2 ( L G − M F M E − L F M G − N F N E − M F ) \begin{aligned} \left( \begin{array}{cc} a & b \\ c & d \end{array} \right) &= \left( \begin{array}{cc} L & M \\ M & N \end{array} \right) \left( \begin{array}{cc} E & F \\ F & G \end{array} \right) ^{-1} \\ &= \frac{1}{EG-F^2} \left( \begin{array}{cc} LG-MF& ME-LF \\ MG-NF & NE-MF \end{array} \right) \end{aligned} (acbd)=(LMMN)(EFFG)1=EGF21(LGMFMGNFMELFNEMF) 由于主曲率 κ \kappa κ 系上述矩阵的特征值,故有特征方程 ∣ κ + M F − L G E G − F 2 L F − M E E G − F 2 N F − M G E G − F 2 κ + M F − N E E G − F 2 ∣ = 0 \begin{aligned} &\left| \begin{array}{cc} \kappa+\frac{MF-LG}{EG-F^2}& \frac{LF-ME}{EG-F^2} \\ \\ \frac{NF-MG}{EG-F^2} & \kappa + \frac{MF-NE}{EG-F^2} \end{array} \right| =0 \end{aligned} κ+EGF2MFLGEGF2NFMGEGF2LFMEκ+EGF2MFNE =0 展开即得 κ 2 − L G − 2 M F + N E E G − F 2 κ + L N − M 2 E G − F 2 = 0 \kappa^2-\frac{LG-2MF+NE}{EG-F^2} \kappa + \frac{LN-M^2}{EG-F^2} =0 κ2EGF2LG2MF+NEκ+EGF2LNM2=0 记曲面的两个主曲率为 κ 1 \kappa_1 κ1 κ 2 \kappa_2 κ2 ,则称 H = 1 2 ( κ 1 + κ 2 ) H=\frac{1}{2}(\kappa_1+\kappa_2) H=21(κ1+κ2) 为曲面的平均曲率 K = κ 1 ⋅ κ 2 \Kappa=\kappa_1 \cdot \kappa_2 K=κ1κ2 称为曲面的高斯曲率。由韦达定理, H = 1 2 L G − 2 M F + N E E G − F 2 , K = L N − M 2 E G − F 2 = ∣ a b c d ∣ \begin{aligned} H &=\frac{1}{2}\frac{LG-2MF+NE}{EG-F^2}, \\ \Kappa &= \frac{LN-M^2}{EG-F^2} = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| \end{aligned} HK=21EGF2LG2MF+NE,=EGF2LNM2= acbd 又由于 n u = − a r u − b r v \bold{n}_u=-a \bold{r}_u-b \bold{r}_v nu=arubrv n v = − c r u − d r v \bold{n}_v=-c \bold{r}_u-d \bold{r}_v nv=crudrv ,得 n u ∧ n v = a d    r u ∧ r v + b c    r v ∧ r u = ( a d − b c )    r u ∧ r v = K    r u ∧ r v \begin{aligned} \bold{n}_u \wedge \bold{n}_v &= ad\; \bold{r}_u \wedge \bold{r}_v +bc\; \bold{r}_v \wedge \bold{r}_u \\ &=(ad-bc)\; \bold{r}_u \wedge \bold{r}_v \\ &=\Kappa \; \bold{r}_u \wedge \bold{r}_v \end{aligned} nunv=adrurv+bcrvru=(adbc)rurv=Krurv 高斯曲率为零的曲面是可展曲面,平均曲率为零的曲面是极小曲面

下面考虑法曲率与主曲率的关系。设 P ∈ S P\in S PS ,取 e 1 , e 2 e_1, e_2 e1,e2 是曲面 S S S P P P 点的主方向,且 { e 1 , e 2 } \{ e_1, e_2 \} {e1,e2} 构成 T P S T_PS TPS 的单位正交基 (注意到 W \mathfrak{W} W 的定义域为 T P S T_PS TPS),由主曲率的定义有 W ( e i ) = κ i e i \mathfrak{W}(e_i)= \kappa_ie_i W(ei)=κiei i = 1 , 2 i=1,2 i=1,2,对任意的单位向量 v ∈ T P S \bold{v}\in T_PS vTPS ,设 v = cos ⁡ ( θ ) e 1 + sin ⁡ ( θ ) e 2 \bold{v}=\cos(\theta)e_1+\sin(\theta)e_2 v=cos(θ)e1+sin(θ)e2 θ \theta θ v \bold{v} v e 1 e_1 e1 的夹角,则 κ n ( v ) = < W ( v ) ,    v > = < cos ⁡ ( θ ) κ 1 e 1 + sin ⁡ ( θ ) κ 2 e 2 ,    cos ⁡ ( θ ) e 1 + sin ⁡ ( θ ) e 2 > = κ 1 cos ⁡ 2 ( θ ) + κ 2 sin ⁡ 2 ( θ ) \begin{aligned} \kappa_n(\bold{v}) &=<\mathfrak{W}(v), \; v> \\ &=<\cos(\theta)\kappa_1e_1+\sin(\theta)\kappa_2e_2, \; \cos(\theta)e_1+\sin(\theta)e_2> \\ &=\kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta) \end{aligned} κn(v)=<W(v),v>=<cos(θ)κ1e1+sin(θ)κ2e2,cos(θ)e1+sin(θ)e2>=κ1cos2(θ)+κ2sin2(θ) 因此有如下欧拉公式
性质6.1 κ 1 \kappa_1 κ1 κ 2 \kappa_2 κ2 是曲面在点 P P P 的主曲率, e 1 e_1 e1 e 2 e_2 e2 是相应的正交主方向,设 v ∈ T P S \bold{v} \in T_PS vTPS 是单位向量, v \bold{v} v e 1 e_1 e1 夹角为 θ \theta θ ,则曲面在 P P P 点沿 v \bold{v} v 方向的法曲率为 κ n ( v ) = κ 1 cos ⁡ 2 ( θ ) + κ 2 sin ⁡ 2 ( θ ) \kappa_n(\bold{v}) =\kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta) κn(v)=κ1cos2(θ)+κ2sin2(θ) 由上述公式可知,当主曲率 κ 1 \kappa_1 κ1 κ 2 \kappa_2 κ2 相等时,法曲率与切方向 v \bold{v} v 无关。当主曲率 κ 1 \kappa_1 κ1 κ 2 \kappa_2 κ2 不等时,根据极值的第二充分条件知,当 θ = 0 \theta=0 θ=0 θ = π 2 \theta=\frac{\pi}{2} θ=2π 时, κ n ( v ) \kappa_n(\bold{v}) κn(v) 同时取极大、极小值 (或同时取极小、极大值) ,这里我们已经解释了前面的问题。

下面考虑高斯映射像的面积与曲面的面积。

设曲面 S S S 的面积微元为 d A dA dA ,回忆如下混合积的结论: a ⋅ ( b ∧ c ) = b ⋅ ( c ∧ a ) = c ⋅ ( a ∧ b ) a \cdot (b \wedge c) = b \cdot (c \wedge a) = c \cdot (a \wedge b) a(bc)=b(ca)=c(ab) 以及拉格朗日公式 a ∧ ( b ∧ c ) = ( a ⋅ c ) b − ( a ⋅ b ) c a \wedge (b \wedge c) = (a\cdot c)b - (a\cdot b)c a(bc)=(ac)b(ab)c r u \bold{r}_u ru r v \bold{r}_v rv 如前所述,则由 d A = ∣ r u ∧ r v ∣ d u d v = ( r u ∧ r v ) ⋅ ( r u ∧ r v )    d u d v = r u ⋅ ( r v ∧ ( r u ∧ r v ) )    d u d v = [ ( r v ⋅ r v ) r u − ( r u ⋅ r v ) r v ] ⋅ r u    d u d v = E G − F 2    d u d v \begin{aligned} dA &= \left| \bold{r}_u \wedge \bold{r}_v \right| dudv \\ &=\sqrt{(\bold{r}_u \wedge\bold{r}_v)\cdot (\bold{r}_u \wedge\bold{r}_v)} \;dudv \\ &=\sqrt{\bold{r}_u \cdot(\bold{r}_v \wedge (\bold{r}_u \wedge\bold{r}_v))} \; dudv \\ &=\sqrt{[(\bold{r}_v \cdot \bold{r}_v)\bold{r}_u - (\bold{r}_u \cdot \bold{r}_v)\bold{r}_v]\cdot \bold{r}_u} \; dudv \\ &=\sqrt{EG-F^2} \; dudv \end{aligned} dA=rurvdudv=(rurv)(rurv) dudv=ru(rv(rurv)) dudv=[(rvrv)ru(rurv)rv]ru dudv=EGF2 dudv 它是曲面 S S S 上,由参数 u u u u + d u u+du u+du 以及 v v v v + d v v+dv v+dv 所围小平行四边形 Δ \Delta Δ 的面积。在高斯映射 g g g 下, g ( Δ ) g(\Delta) g(Δ) 的定向面积 d σ d\sigma dσ d σ = ∣ ( n ( u + d u , v ) − n ( u , v ) ) ∧ ( n ( u , v + d v ) − n ( u , v ) ) ∣ ≈ ∣ n u ∧ n v ∣ d u d v \begin{aligned} d\sigma &= \left| (\bold{n}(u+du, v)-\bold{n}(u,v)) \wedge (\bold{n}(u, v+dv)-\bold{n}(u,v)) \right| \\ &\approx \left| \bold{n}_u \wedge \bold{n}_v \right| dudv \end{aligned} dσ=(n(u+du,v)n(u,v))(n(u,v+dv)n(u,v))nunvdudv 我们可以取后面这个近似的面积,即 d σ = ∣ n u ∧ n v ∣ d u d v = K ∣ r u ∧ r v ∣ d u d v = K d A d\sigma = \left| \bold{n}_u \wedge \bold{n}_v \right| dudv = \Kappa \left| \bold{r}_u \wedge \bold{r}_v \right| dudv = \Kappa dA dσ=nunvdudv=Krurvdudv=KdA 其中 K \Kappa K 为高斯曲率。取 D D D S S S 上的含 P P P 的区域, g ( D ) g(D) g(D) D D D 在高斯映射下的像曲面,则其面积为 A r e a ( g ( D ) ) = ∫ g ( D ) d σ = ∫ D K d A Area(g(D)) = \int_{g(D)} d\sigma = \int_{D} \Kappa dA Area(g(D))=g(D)dσ=DKdA D → P D \to P DP 时, lim ⁡ D → P A r e a ( g ( D ) ) A r e a ( D ) = lim ⁡ D → P ∫ D K d A ∫ D d A = K ( P ) \lim_{D \to P} \frac{Area(g(D))}{Area(D)} =\lim_{D \to P} \frac{\int_{D} \Kappa dA}{\int_{D} dA}= \Kappa(P) DPlimArea(D)Area(g(D))=DPlimDdADKdA=K(P) 上式最后一个等式通过第一型曲面积分的中值定理可以直接推出。积分项 ∫ D K d A \int_{D} \Kappa dA DKdA 还会在后面的高斯-博内定理中出现。

这便是高斯曲率的几何意义,高斯映射像的曲面在一点的弯曲程度,正是该点曲面的高斯曲率

至此,我们将曲面的局部理论介绍完了,后面将进行曲率的 Python 编程计算。


七、Python 的高斯曲率计算

说明:前面数学基础打好了,往往后面的编程就是最容易实现的了。

7.1 导数运算

首先复习求导如何实现

from sympy import symbols, diff

# 自己定义一个多元函数
def function(x,y):
    return y*x**2 + 2*y**2


# 先将所求变量(x,y)符号化。
x, y = symbols('x y', real=True)

print("对x求偏导:")
print(diff(function(x, y), x))
print("对y求偏导")
print(diff(function(x,y),y))
print("对x,y求二阶混合偏导")
print(diff(function(x,y),x,y))
print("对x求二阶偏导:")
print(diff(function(x, y), x, 2))
print("对y求二阶偏导:")
print(diff(function(x, y), y, 2))

输出下面结果

对x求偏导:
2*x*y
对y求偏导
x**2 + 4*y
对x,y求二阶混合偏导
2*x
对x求二阶偏导:
2*y
对y求二阶偏导:
4

7.2 球面的高斯曲率

基于前面六章内容,我们现在可以编写常见曲面曲率计算的 Python 代码了,球面曲率比较容易实现。

# 半径为 R 的球面的曲率计算

import sympy
from sympy import symbols, diff, simplify

# 球面的度规张量 g11
def g11(theta, phi):
    R = symbols('R', real=True)
    return R**2

# 球面的度规张量 g22
def g22(theta, phi):
    R = symbols('R', real=True)
    return R**2*(sympy.sin(theta))**2

# 度规矩阵的行列式
def g(theta, phi):
    R = symbols('R', real=True)
    return R**4*(sympy.sin(theta))**2

# 曲率(此曲率公式有化简,不能用于一般的曲面情形)
def K(theta, phi):
    return (1/(2*g(theta, phi)))*(-diff(g11(theta, phi), phi, 2)-diff(g22(theta, phi), theta, 2)) \
            -(g22(theta, phi)/(4*g(theta, phi)**2))*(diff(g11(theta, phi), theta)*(-diff(g22(theta, phi), theta))-diff(g11(theta, phi), phi)**2)\
            -(g11(theta, phi)/(4*g(theta, phi)**2))*(diff(g22(theta, phi), phi)*(-diff(g11(theta, phi), phi))-diff(g22(theta, phi), theta)**2)

# 先将所求变量(theta,phi)符号化
theta, phi = symbols('theta phi', real=True)

# 计算半径为 R 的球面的曲率
simplify(K(theta, phi))

输出结果为 1 R 2 \frac{1}{R^2} R21 ,说明球面具有恒定常值的正曲率。

实际上前面已经给出了球面的法曲率为 1 R \frac{1}{R} R1 ,由于其法曲率等于两个主曲率,故其高斯曲率也应该是 1 R ⋅ 1 R = 1 R 2 \frac{1}{R}\cdot \frac{1}{R}=\frac{1}{R^2} R1R1=R21

7.3 双曲抛物面的高斯曲率

# 双曲抛物面 z=xy 的曲率计算

import sympy
from sympy import symbols, diff, simplify

# 双曲抛物面的度规张量 g11
def g11(u, v):
    return 1+v**2

# 双曲抛物面的度规张量 g22
def g22(u, v):
    return 1+u**2

# 双曲抛物面的度规张量 g12
def g12(u, v):
    return u*v

# 度规矩阵的行列式
def g(u, v):
    return (g11(u, v)*g22(u, v) - g12(u, v)**2)

# 曲率(此处曲率公式为一般情形)
def K(theta, phi):
    return (1/(2*g(theta, phi)))*(2*diff(g12(theta, phi),theta,phi)-diff(g11(theta, phi), phi, 2)-diff(g22(theta, phi), theta, 2)) \
            -(g22(theta, phi)/(4*g(theta, phi)**2))*(diff(g11(theta, phi), theta)*(2*diff(g12(theta, phi), phi)-diff(g22(theta, phi), theta))-diff(g11(theta, phi), phi)**2)\
            -(g11(theta, phi)/(4*g(theta, phi)**2))*(diff(g22(theta, phi), phi)*(2*diff(g12(theta, phi), theta)-diff(g11(theta, phi), phi))-diff(g22(theta, phi), theta)**2) \
            +(g12(theta, phi)/(4*g(theta, phi)**2))*((diff(g11(theta, phi), theta))*(diff(g22(theta, phi), phi))-2*(diff(g11(theta, phi), phi))*(diff(g22(theta, phi), theta))+(2*diff(g12(theta, phi), theta)-diff(g11(theta, phi), phi))*(2*diff(g12(theta, phi), phi)-diff(g22(theta, phi), theta)) )

# 先将所求变量(theta,phi)符号化
u, v = symbols('u v', real=True)

# 计算双曲抛物面 z=xy 的曲率
sympy.factor(simplify(K(u, v)))

输出结果为 − 1 ( u 2 + v 2 + 1 ) 2 -\frac{1}{\left(u^{2} + v^{2} + 1\right)^{2}} (u2+v2+1)21 ,这是一个马鞍面,该曲面具有恒定但不常值的负曲率。

7.4 锥面的高斯曲率

# 锥面 z^2 = x^2 + y^2 的曲率计算

import sympy
from sympy import symbols, diff, simplify

# 双曲抛物面的度规张量 g11   v = z  u=theta
def g11(u, v):
    return v**2

# 双曲抛物面的度规张量 g22
def g22(u, v):
    return 2

# 双曲抛物面的度规张量 g12
def g12(u, v):
    return 0

# 度规矩阵的行列式
def g(u, v):
    return (g11(u, v)*g22(u, v) - g12(u, v)**2)

# 曲率
def K(theta, phi):
    return (1/(2*g(theta, phi)))*(2*diff(g12(theta, phi),theta,phi)-diff(g11(theta, phi), phi, 2)-diff(g22(theta, phi), theta, 2)) \
            -(g22(theta, phi)/(4*g(theta, phi)**2))*(diff(g11(theta, phi), theta)*(2*diff(g12(theta, phi), phi)-diff(g22(theta, phi), theta))-diff(g11(theta, phi), phi)**2)\
            -(g11(theta, phi)/(4*g(theta, phi)**2))*(diff(g22(theta, phi), phi)*(2*diff(g12(theta, phi), theta)-diff(g11(theta, phi), phi))-diff(g22(theta, phi), theta)**2) \
            +(g12(theta, phi)/(4*g(theta, phi)**2))*((diff(g11(theta, phi), theta))*(diff(g22(theta, phi), phi))-2*(diff(g11(theta, phi), phi))*(diff(g22(theta, phi), theta))+(2*diff(g12(theta, phi), theta)-diff(g11(theta, phi), phi))*(2*diff(g12(theta, phi), phi)-diff(g22(theta, phi), theta)) )

# 先将所求变量(theta,phi)符号化
u, v = symbols('u v', real=True)

# 计算锥面 z^2 = x^2 + y^2 的曲率
sympy.factor(simplify(K(u, v)))

输出结果为 0 0 0 ,即锥面是可展曲面,跟平面一样也是平坦的。

至于其它曲面,大家可以自己动手改写代码,不在此赘述。值得一提的是莫比乌斯带,一个二维不可定向曲面,它的高斯曲率是不确定的,其原因还需要进一步加深学习,本文不在说明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tengfei Wang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值