证明下述不等式
设
a
,
b
,
c
a,b,c
a,b,c 是正实数,请证明下述不等式:
1
<
a
a
2
+
b
2
+
b
b
2
+
c
2
+
c
c
2
+
a
2
≤
3
2
1<\frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{b^2 + c^2}} + \frac{c}{\sqrt{c^2 + a^2}} \le \frac{3}{\sqrt2}
1<a2+b2a+b2+c2b+c2+a2c≤23 上述不等式及其证明思路参考文献 [1],本文将给出更多的证明细节,并且对右边的不等式选取柯西·施瓦兹不等式的证明方法。
证明
先证左边的简单不等式。
a
a
2
+
b
2
+
b
b
2
+
c
2
+
c
c
2
+
a
2
>
a
a
2
+
b
2
+
c
2
+
b
a
2
+
b
2
+
c
2
+
c
a
2
+
b
2
+
c
2
=
a
+
b
+
c
a
2
+
b
2
+
c
2
>
1
\begin{align} &\frac a{\sqrt{a^2+b^2}} + \frac b{\sqrt{b^2+c^2}} + \frac c{\sqrt{c^2+a^2}} \\ &> \frac a{\sqrt{a^2+b^2+c^2}} + \frac b{\sqrt{a^2+b^2+c^2}} + \frac c{\sqrt{a^2+b^2+c^2}}\\ &= \frac {a+b+c}{\sqrt{a^2+b^2+c^2}}\\ &> 1 \end{align}
a2+b2a+b2+c2b+c2+a2c>a2+b2+c2a+a2+b2+c2b+a2+b2+c2c=a2+b2+c2a+b+c>1 下面证明右边的不等式。先给出一个基本不等式,其结论成立是不言而喻的:
∑
cyc
c
2
(
a
2
−
b
2
)
2
≥
0
\begin{align} \sum_{\text{cyc}}c^2(a^2-b^2)^2\geq0 \end{align}
cyc∑c2(a2−b2)2≥0 其中
∑
cyc
\sum_{\text{cyc}}
∑cyc 表示循环求和,比如
∑
cyc
a
2
=
a
2
+
b
2
+
c
2
\sum_{\text{cyc}} a^2=a^2+b^2+c^2
∑cyca2=a2+b2+c2. 对(5)式进行改写得:
a
4
c
2
+
b
4
c
2
+
b
2
c
4
+
a
4
b
2
+
a
2
b
4
+
a
2
c
4
≥
6
a
2
b
2
c
2
\begin{align} a^4c^2+b^4c^2+ b^2c^4+a^4b^2+a^2b^4+a^2c^4\geq 6a^2b^2c^2 \end{align}
a4c2+b4c2+b2c4+a4b2+a2b4+a2c4≥6a2b2c2 上式也可以简记为
∑
cyc
c
2
(
a
4
+
b
4
)
≥
6
a
2
b
2
c
2
\begin{align} \sum_{\text{cyc}} c^2(a^4+b^4)\geq 6a^2b^2c^2 \end{align}
cyc∑c2(a4+b4)≥6a2b2c2 有了(7)式,我们可以推出下面的不等式(8):
8
∑
cyc
a
2
∑
cyc
a
2
b
2
≤
9
∏
cyc
(
a
2
+
b
2
)
\begin{align} 8\sum_{\text{cyc}}a^2\sum_{\text{cyc}}a^2b^2 \leq 9\prod_{\text{cyc}}(a^2+b^2) \end{align}
8cyc∑a2cyc∑a2b2≤9cyc∏(a2+b2) 过程如下,因为:
∏
cyc
(
a
2
+
b
2
)
=
2
a
2
b
2
c
2
+
∑
cyc
c
2
(
a
4
+
b
4
)
\begin{align} \prod_{\text{cyc}} (a^2+b^2)=2a^2b^2c^2 +\sum_{\text{cyc}} c^2(a^4+b^4) \end{align}
cyc∏(a2+b2)=2a2b2c2+cyc∑c2(a4+b4) 所以结合(7)式:
9
∏
cyc
(
a
2
+
b
2
)
=
18
a
2
b
2
c
2
+
9
∑
cyc
c
2
(
a
4
+
b
4
)
=
18
a
2
b
2
c
2
+
∑
cyc
c
2
(
a
4
+
b
4
)
+
8
∑
cyc
c
2
(
a
4
+
b
4
)
≥
24
a
2
b
2
c
2
+
8
∑
cyc
c
2
(
a
4
+
b
4
)
=
8
∑
cyc
a
2
∑
cyc
a
2
b
2
\begin{align} &9\prod_{\text{cyc}} (a^2+b^2) \\ &= 18a^2b^2c^2+9\sum_{\text{cyc}} c^2(a^4+b^4) \\ &=18a^2b^2c^2+\sum_{\text{cyc}} c^2(a^4+b^4) + 8\sum_{\text{cyc}} c^2(a^4+b^4) \\ &\geq 24a^2b^2c^2+8\sum_{\text{cyc}} c^2(a^4+b^4) \\ &=8\sum_{\text{cyc}}a^2\sum_{\text{cyc}}a^2b^2 \end{align}
9cyc∏(a2+b2)=18a2b2c2+9cyc∑c2(a4+b4)=18a2b2c2+cyc∑c2(a4+b4)+8cyc∑c2(a4+b4)≥24a2b2c2+8cyc∑c2(a4+b4)=8cyc∑a2cyc∑a2b2 借助不等式(8),现在我们来证明原不等式的右边,由柯西·施瓦兹不等式我们有:
(
∑
cyc
a
a
2
+
b
2
)
2
=
(
∑
cyc
a
a
2
+
b
2
a
2
+
c
2
a
2
+
c
2
)
2
≤
∑
cyc
a
2
(
a
2
+
b
2
)
(
a
2
+
c
2
)
∑
cyc
(
a
2
+
c
2
)
\begin{align} &\left(\sum_{\text{cyc}}\frac{a}{\sqrt{a^2+b^2}}\right)^2 \\ &=\left(\sum_{\text{cyc}}\frac{a}{\sqrt{a^2+b^2}\sqrt{a^2+c^2}} \sqrt{a^2+c^2}\right)^2 \\ &\leq\sum_{\text{cyc}}\frac{a^2}{(a^2+b^2)(a^2+c^2)}\sum_{\text{cyc}}(a^2+c^2) \end{align}
(cyc∑a2+b2a)2=(cyc∑a2+b2a2+c2aa2+c2)2≤cyc∑(a2+b2)(a2+c2)a2cyc∑(a2+c2) 接下来估计(17)式
∑
cyc
a
2
(
a
2
+
b
2
)
(
a
2
+
c
2
)
∑
cyc
(
a
2
+
c
2
)
\sum_{\text{cyc}}\frac{a^2}{(a^2+b^2)(a^2+c^2)}\sum_{\text{cyc}}(a^2+c^2)
∑cyc(a2+b2)(a2+c2)a2∑cyc(a2+c2) 的上界。我们作下述变形,并结合(8)式得:
∑
cyc
a
2
(
a
2
+
b
2
)
(
a
2
+
c
2
)
∑
cyc
(
a
2
+
c
2
)
=
2
∑
cyc
a
2
(
a
2
+
b
2
)
(
a
2
+
c
2
)
∑
cyc
a
2
=
2
∑
cyc
a
2
(
b
2
+
c
2
)
(
a
2
+
b
2
)
(
b
2
+
c
2
)
(
c
2
+
a
2
)
∑
cyc
a
2
=
2
∑
cyc
a
2
(
b
2
+
c
2
)
∑
cyc
a
2
∏
cyc
(
a
2
+
b
2
)
=
4
∑
cyc
a
2
b
2
∑
cyc
a
2
∏
cyc
(
a
2
+
b
2
)
≤
9
2
∏
cyc
(
a
2
+
b
2
)
∏
cyc
(
a
2
+
b
2
)
=
9
2
\begin{align} &\sum_{\text{cyc}}\frac{a^2}{(a^2+b^2)(a^2+c^2)}\sum_{\text{cyc}}(a^2+c^2) \\ &=2\sum_{\text{cyc}}\frac{a^2}{(a^2+b^2)(a^2+c^2)}\sum_{\text{cyc}}a^2 \\ &=2\sum_{\text{cyc}}\frac{a^2(b^2+c^2)}{(a^2+b^2)(b^2+c^2)(c^2+a^2)}\sum_{\text{cyc}}a^2 \\ &=\frac{2\sum_{\text{cyc}}a^2(b^2+c^2)\sum_{\text{cyc}}a^2}{\prod_{\text{cyc}} (a^2+b^2)} \\ &=\frac{4\sum_{\text{cyc}}a^2b^2\sum_{\text{cyc}}a^2}{\prod_{\text{cyc}} (a^2+b^2)} \\ &\leq \frac{9}{2} \frac{\prod_{\text{cyc}} (a^2+b^2)}{\prod_{\text{cyc}} (a^2+b^2)}=\frac{9}{2} \end{align}
cyc∑(a2+b2)(a2+c2)a2cyc∑(a2+c2)=2cyc∑(a2+b2)(a2+c2)a2cyc∑a2=2cyc∑(a2+b2)(b2+c2)(c2+a2)a2(b2+c2)cyc∑a2=∏cyc(a2+b2)2∑cyca2(b2+c2)∑cyca2=∏cyc(a2+b2)4∑cyca2b2∑cyca2≤29∏cyc(a2+b2)∏cyc(a2+b2)=29 证毕
□
\quad\Box
□
显然 a = b = c a=b=c a=b=c 时,原不等式的右边等号成立。
参考文献
[1] Symmetric inequality with three variables including radicals