矩阵秩的不等式及其证明
- ( A B ) T = B T A T (A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}} (AB)T=BTAT
证明:设 A = ( a i j ) m × s , B = ( b i j ) s × n A=\left(a_{i j}\right)_{m \times s}, B=\left(b_{i j}\right)_{s \times n} A=(aij)m×s,B=(bij)s×n,记 A B = C = ( c i j ) m × n , B T A T = D = ( d i j ) n × m A B=C=\left(c_{i j}\right)_{m \times n}, B^{T} A^{T}=D=\left(d_{i j}\right)_{n \times m} AB=C=(cij)m×n,BTAT=D=(dij)n×m,于是根据矩阵乘法公式,有
c j i = ∑ k = 1 s a j k b k i c_{j i}=\sum_{k=1}^{s} a_{j k} b_{k i} cji=k=1∑sajkbki
而 B T \boldsymbol{B}^{\mathbf{T}} BT的第 i i i行为 ( b 1 i , ⋯ , b s i ) , A T \left(b_{1 i}, \cdots, b_{s i}\right), \boldsymbol{A}^{\mathrm{T}} (b1i,⋯,bsi),AT的第 j j j列为 ( a j 1 , ⋯ , a j s ) T \left(a_{j 1}, \cdots, a_{j s}\right)^{T} (aj1,⋯,ajs)T,因此
d i j = ∑ k = 1 s b k i a j k = ∑ k = 1 s a j k b k i d_{i j}=\sum_{k=1}^{s} b_{k i} a_{j k}=\sum_{k=1}^{s} a_{j k} b_{k i} dij=k=1∑sbkiajk=k=1∑sajkbki
所以
d i j = c j i ( i = 1 , 2 , ⋯ , n ; j = 1 , 2 , ⋯ , m ) d_{i j}=c_{j i} \quad(i=1,2, \cdots, n ; j=1,2, \cdots, m) dij=cji(i=1,2,⋯,n;j=1,2,⋯,m)
即 D = C T D=C^{\mathrm{T}} D=CT
- 0 ⩽ r ( A ) ⩽ min { m , n } 0 \leqslant r(A) \leqslant \min \{m, n\} 0⩽r(A)⩽min{ m,n}
这个由定义就很容易理解,不再证明
- r ( A B ) ⩽ min { r ( A ) , r ( B ) } r(A B) \leqslant \min \{r(\boldsymbol{A}), r(\boldsymbol{B})\} r(AB)⩽min{ r(A),r(B)}
分析:对于向量组 α 1 , α 2 , ⋯ , α s \alpha_{1}, \alpha_{2}, \cdots, \alpha_{s} α1,α2,⋯,αs及 β 1 , β 2 , ⋯ , β t \beta_{1}, \beta_{2}, \cdots, \beta_{t} β1,β2,⋯,βt,若任一 β i ( i = 1 , 2 , ⋯ , t ) \boldsymbol{\beta}_{i}(i=1,2, \cdots, t) βi(i=1,2,⋯,t)均可由 α 1 , α 2 , ⋯ , α s \alpha_{1}, \alpha_{2}, \cdots, \alpha_{s} α1,α2,⋯,αs线性表出,则 r ( β 1 , β 2 , ⋯ , β t ) ⩽ r ( α 1 , α 2 , ⋯ , α s ) r\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{t}\right) \leqslant r\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}\right) r(β1,β2,⋯,βt)⩽r(α1,α2,⋯,αs),这是本题证明的关键依据
**证明:**不妨设 A m × n , B n × s A_{m \times n}, B_{n \times s} Am×n,Bn×s,将 B , A B B, A B B,AB按行分块为 B = [ β 1 β 2 ⋮ β n ] , A B = C = [ γ 1 γ 2 ⋮ γ m ] B=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right], A B=C=\left[\begin{array}{c}\gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{m}\end{array}\right] B=⎣⎢⎢⎢⎡β1β