矩阵秩的不等式证明

矩阵秩的不等式及其证明

  1. ( A B ) T = B T A T (A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}} (AB)T=BTAT

证明:设 A = ( a i j ) m × s , B = ( b i j ) s × n A=\left(a_{i j}\right)_{m \times s}, B=\left(b_{i j}\right)_{s \times n} A=(aij)m×s,B=(bij)s×n,记 A B = C = ( c i j ) m × n , B T A T = D = ( d i j ) n × m A B=C=\left(c_{i j}\right)_{m \times n}, B^{T} A^{T}=D=\left(d_{i j}\right)_{n \times m} AB=C=(cij)m×n,BTAT=D=(dij)n×m,于是根据矩阵乘法公式,有
c j i = ∑ k = 1 s a j k b k i c_{j i}=\sum_{k=1}^{s} a_{j k} b_{k i} cji=k=1sajkbki
B T \boldsymbol{B}^{\mathbf{T}} BT的第 i i i行为 ( b 1 i , ⋯   , b s i ) , A T \left(b_{1 i}, \cdots, b_{s i}\right), \boldsymbol{A}^{\mathrm{T}} (b1i,,bsi),AT的第 j j j列为 ( a j 1 , ⋯   , a j s ) T \left(a_{j 1}, \cdots, a_{j s}\right)^{T} (aj1,,ajs)T,因此
d i j = ∑ k = 1 s b k i a j k = ∑ k = 1 s a j k b k i d_{i j}=\sum_{k=1}^{s} b_{k i} a_{j k}=\sum_{k=1}^{s} a_{j k} b_{k i} dij=k=1sbkiajk=k=1sajkbki
所以
d i j = c j i ( i = 1 , 2 , ⋯   , n ; j = 1 , 2 , ⋯   , m ) d_{i j}=c_{j i} \quad(i=1,2, \cdots, n ; j=1,2, \cdots, m) dij=cji(i=1,2,,n;j=1,2,,m)
D = C T D=C^{\mathrm{T}} D=CT

  1. 0 ⩽ r ( A ) ⩽ min ⁡ { m , n } 0 \leqslant r(A) \leqslant \min \{m, n\} 0r(A)min{m,n}

这个由定义就很容易理解,不再证明

  1. r ( A B ) ⩽ min ⁡ { r ( A ) , r ( B ) } r(A B) \leqslant \min \{r(\boldsymbol{A}), r(\boldsymbol{B})\} r(AB)min{r(A),r(B)}

分析:对于向量组 α 1 , α 2 , ⋯   , α s \alpha_{1}, \alpha_{2}, \cdots, \alpha_{s} α1,α2,,αs β 1 , β 2 , ⋯   , β t \beta_{1}, \beta_{2}, \cdots, \beta_{t} β1,β2,,βt,若任一 β i ( i = 1 , 2 , ⋯   , t ) \boldsymbol{\beta}_{i}(i=1,2, \cdots, t) βi(i=1,2,,t)均可由 α 1 , α 2 , ⋯   , α s \alpha_{1}, \alpha_{2}, \cdots, \alpha_{s} α1,α2,,αs线性表出,则 r ( β 1 , β 2 , ⋯   , β t ) ⩽ r ( α 1 , α 2 , ⋯   , α s ) r\left(\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{t}\right) \leqslant r\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{s}\right) r(β1,β2,,βt)r(α1,α2,,αs),这是本题证明的关键依据

**证明:**不妨设 A m × n , B n × s A_{m \times n}, B_{n \times s} Am×n,Bn×s,将 B , A B B, A B B,AB按行分块为 B = [ β 1 β 2 ⋮ β n ] , A B = C = [ γ 1 γ 2 ⋮ γ m ] B=\left[\begin{array}{c}\beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n}\end{array}\right], A B=C=\left[\begin{array}{c}\gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{m}\end{array}\right] B=β1β2βn,AB=C=γ1γ2γm,于是
A B = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a n n ] [ β 1 β 2 ⋮ β n ] = [ a 11 β 1 + a 12 β 2 + ⋯ + a 1 n β n a 21 β 1 + a 22 β 2 + ⋯ + a 2 n β n ⋮ a m 1 β 1 + a m 2 β 2 + ⋯ + a m β n ] = [ γ 1 γ 2 ⋮ γ m ] A B=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{n n} \end{array}\right]\left[\begin{array}{c} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{array}\right]=\left[\begin{array}{c} a_{11} \beta_{1}+a_{12} \beta_{2}+\cdots+a_{1 n} \beta_{n} \\ a_{21} \beta_{1}+a_{22} \beta_{2}+\cdots+a_{2 n} \beta_{n} \\ \vdots \\ a_{m 1} \beta_{1}+a_{m 2} \beta_{2}+\cdots+a_{m} \beta_{n} \end{array}\right]=\left[\begin{array}{c} \gamma_{1} \\ \gamma_{2} \\ \vdots \\ \gamma_{m} \end{array}\right] AB=a11a21am1a12a22am2a1na2nannβ1β2βn=a11β1+a12β2++a1nβna21β1+a22β2++a2nβnam1β1+am2β2++amβn=γ1γ2γm

所以 A B AB AB的行向量 γ i ( i = 1 , 2 , ⋯   , m ) \gamma_{i}(i=1,2, \cdots, m) γi(i=1,2,,m)均可由 B B B的行向量线性表出,故

r ( A B ) ⩽ r ( B ) r(A B) \leqslant r(B) r(AB)r(B)

同理可证 r ( A B ) ⩽ r ( A ) r(A B) \leqslant r(A) r(AB)r(A),故有 r ( A B ) ⩽ min ⁡ { r ( A ) , r ( B ) } r(A B) \leqslant \min \{r(A), r(B)\} r(AB)min{r(A),r(B)}

  1. r ( A + B ) ⩽ r ( A ) + r ( B ) r(A+B) \leqslant r(A)+r(B) r(A+B)r(A)+r(B)

证明:设 r ( A ) = p , r ( B ) = q r(A)=p, r(\boldsymbol{B})=q r(A)=p,r(B)=q,将 A , B A,B A,B按列分块为
A = [ α 1 , α 2 , ⋯   , α s ] , B = [ β 1 , β 2 , ⋯   , β s ] A=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}\right], B=\left[\beta_{1}, \beta_{2}, \cdots, \beta_{s}\right] A=[α1,α2,,αs],B=[β1,β2,,βs]

于是

[ A , B ] = [ α 1 , α 2 , ⋯   , α s , β 1 , β 2 , ⋯   , β s ] A + B = [ α 1 + β 1 , α 2 + β 2 , ⋯   , α s + β s ] \begin{array}{c} {[A, B]=\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}, \beta_{1}, \beta_{2}, \cdots, \beta_{s}\right]} \\ A+B=\left[\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}, \cdots, \alpha_{s}+\beta_{s}\right] \end{array} [A,B]=[α1,α2,,αs,β1,β2,,βs]A+B=[α1+β1,α2+β2,,αs+βs]

α i + β i ( i = 1 , 2 , ⋯   , s ) \boldsymbol{\alpha}_{i}+\boldsymbol{\beta}_{i}(i=1,2, \cdots, s) αi+βi(i=1,2,,s)均可由向量组 α 1 , α 2 , ⋯   , α s , β 1 , β 2 , ⋯   , β s \alpha_{1}, \alpha_{2}, \cdots, \alpha_{s}, \beta_{1}, \beta_{2}, \cdots, \beta_{s} α1,α2,,αs,β1,β2,,βs线性表出,故

r ( A + B ) ⩽ r ( [ A , B ] ) r(A+B) \leqslant r([A, B]) r(A+B)r([A,B])

又设 A , B A,B A,B的列向量的极大线性无关组分别为 α 1 , α 2 , ⋯   , α p \alpha_{1}, \alpha_{2}, \cdots, \alpha_{p} α1,α2,,αp β 1 , β 2 , ⋯   , β q \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{q} β1,β2,,βq。将 A A A的极大线性无关组 α 1 , α 2 , ⋯   , α p \alpha_{1}, \alpha_{2}, \cdots, \alpha_{p} α1,α2,,αp扩充成 [ A , B ] [A,B] [A,B]的极大线性无关组,设为 α 1 , α 2 , ⋯   , α p , β 1 , β 2 , ⋯   , β w \alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}, \beta_{1}, \beta_{2}, \cdots, \beta_{w} α1,α2,,αp,β1,β2,,βw,显然 w ⩽ q w \leqslant q wq,故有

r ( [ A , B ] ) = p + w ⩽ p + q = r ( A ) + r ( B ) r([A, B])=p+w \leqslant p+q=r(A)+r(B) r([A,B])=p+wp+q=r(A)+r(B)

r ( A + B ) ⩽ r ( [ A , B ] ) ⩽ r ( A ) + r ( B ) r(A+B) \leqslant r([A, B]) \leqslant r(A)+r(B) r(A+B)r([A,B])r(A)+r(B)

  1. r ( [ A O O B ] ) = r ( A ) + r ( B ) r\left(\left[\begin{array}{ll}A & O \\ O & B\end{array}\right]\right)=r(A)+r(B) r([AOOB])=r(A)+r(B)

  2. r ( A ) + r ( B ) ⩽ r ( [ A O C B ] ) ⩽ r ( A ) + r ( B ) + r ( C ) r(\boldsymbol{A})+r(\boldsymbol{B}) \leqslant r\left(\left[\begin{array}{cc}\boldsymbol{A} & \boldsymbol{O} \\ \boldsymbol{C} & \boldsymbol{B}\end{array}\right]\right) \leqslant r(\boldsymbol{A})+r(\boldsymbol{B})+r(\boldsymbol{C}) r(A)+r(B)r([ACOB])r(A)+r(B)+r(C)

证明:

r ( A ) + r ( B ) = r ( [ A , O ] ) + r ( [ O , B ] ) = r ( [ A O O B ] ) ⩽ r ( [ A O C B ] ) ⩽ r ( [ A , O ] ) + r ( [ C , B ] ) ⩽ r ( A ) + r ( B ) + r ( C ) \begin{aligned} r(A)+r(B) &=r([A, O])+r([O, B]) \\ &=r\left(\left[\begin{array}{cc} A & O \\ O & B \end{array}\right]\right) \leqslant r\left(\left[\begin{array}{cc} A & O \\ C & B \end{array}\right]\right) \\ & \leqslant r([A, O])+r([C, B]) \\ & \leqslant r(A)+r(B)+r(C) \end{aligned} r(A)+r(B)=r([A,O])+r([O,B])=r([AOOB])r([ACOB])r([A,O])+r([C,B])r(A)+r(B)+r(C)

(因 r ( B ) ⩽ r ( [ C , B ] ) ⩽ r ( B ) + r ( C ) r(\boldsymbol{B}) \leqslant r([\boldsymbol{C}, \boldsymbol{B}]) \leqslant r(\boldsymbol{B})+r(\boldsymbol{C}) r(B)r([C,B])r(B)+r(C)

注解:第五题也为本题的一个特例

  1. r ( A B ) ⩾ r ( A ) + r ( B ) − n r(A B) \geqslant r(A)+r(B)-n r(AB)r(A)+r(B)n(当 A B = O A B=O AB=O时, r ( A ) + r ( B ) ⩽ n r(A)+r(B) \leqslant n r(A)+r(B)n n n n A A A的列数或 B B B的行数)

证明::对 [ A O E n B ] \left[\begin{array}{ll}\mathbf{A} & \boldsymbol{O} \\ \boldsymbol{E}_{n} & \boldsymbol{B}\end{array}\right] [AEnOB]做初等变换,得:

[ A O E n B ] → [ O − A B E n B ] → [ O − A B E n O ] → [ E n O O A B ] \left[\begin{array}{cc} A & O \\ E_{n} & B \end{array}\right] \rightarrow\left[\begin{array}{cc} O & -A B \\ E_{n} & B \end{array}\right] \rightarrow\left[\begin{array}{cc} O & -A B \\ E_{n} & O \end{array}\right] \rightarrow\left[\begin{array}{cc} E_{n} & O \\ O & A B \end{array}\right] [AEnOB][OEnABB][OEnABO][EnOOAB]

又显然 r ( A ) + r ( B ) = r ( [ A O O B ] ) ⩽ r ( [ A O E n B ] ) r(A)+r(B)=r\left(\left[\begin{array}{ll}A & O \\ O & B\end{array}\right]\right) \leqslant r\left(\left[\begin{array}{ll}A & O \\ E_{n} & B\end{array}\right]\right) r(A)+r(B)=r([AOOB])r([AEnOB]),则

r ( A ) + r ( B ) ⩽ r ( [ E n O O A B ] ) = r ( E n ) + r ( A B ) = n + r ( A B ) r(\boldsymbol{A})+r(\boldsymbol{B}) \leqslant r\left(\left[\begin{array}{cc} \boldsymbol{E}_{n} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{A} \boldsymbol{B} \end{array}\right]\right)=r\left(\boldsymbol{E}_{n}\right)+r(\boldsymbol{A} \boldsymbol{B})=n+r(\boldsymbol{A} \boldsymbol{B}) r(A)+r(B)r([EnOOAB])=r(En)+r(AB)=n+r(AB)

所以 r ( A B ) ⩾ r ( A ) + r ( B ) − n r(A B) \geqslant r(A)+r(B)-n r(AB)r(A)+r(B)n

  1. r ( A ) = r ( A T ) = r ( A A T ) = r ( A T A ) r(A)=r\left(A^{\mathrm{T}}\right)=r\left(A A^{\mathrm{T}}\right)=r\left(A^{\mathrm{T}} A\right) r(A)=r(AT)=r(AAT)=r(ATA)

  2. r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r\left(A^{*}\right)=\left\{\begin{array}{ll}n, & r(A)=n \\ 1, & r(A)=n-1 \\ 0, & r(A)<n-1\end{array}\right. r(A)=n,1,0,r(A)=nr(A)=n1r(A)<n1,其中 A A A n n n阶方阵

证明::当 r ( A ) = n r(\boldsymbol{A})=n r(A)=n时, A A A可逆, ∣ A ∣ ≠ 0 |A| \neq 0 A=0,由 A A ∗ = ∣ A ∣ E A A^{*}=|A| E AA=AE可知, A A A A ∗ A^{*} A均是可逆矩阵,故 r ( A ∗ ) = n r\left(A^{*}\right)=n r(A)=n

r ( A ) = n − 1 r(\boldsymbol{A})=n-1 r(A)=n1时,由矩阵的秩的定义知, ∣ A ∣ |A| A中存在 n − 1 n-1 n1阶子式不等于零,而 A ∗ 由 A^{*}由 A ∣ A ∣ |A| A的元素的 a i j a_{i j} aij的代数余子式 A i j A_{i j} Aij组成,故 r ( A ∗ ) ⩾ 1 r\left(\boldsymbol{A}^{*}\right) \geqslant 1 r(A)1,又 r ( A ) = n − 1 , ∣ A ∣ = 0 , A A ∗ = ∣ A ∣ E = O r(\boldsymbol{A})=n-1,|\boldsymbol{A}|=0, \boldsymbol{A} \boldsymbol{A}^{*}=|\boldsymbol{A}| \boldsymbol{E}=\boldsymbol{O} r(A)=n1,A=0,AA=AE=O,得 r ( A ) + r ( A ∗ ) ⩽ n r(A)+r\left(A^{*}\right) \leqslant n r(A)+r(A)n,而 r ( A ) = n − 1 r(A)=n-1 r(A)=n1,故 r ( A ∗ ) ⩽ 1 r\left(A^{*}\right) \leqslant 1 r(A)1(或 A ∗ A^{*} A的每一列均是 A x = 0 Ax=0 Ax=0的解向量,故 r ( A ∗ ) ⩽ 1 r\left(\boldsymbol{A}^{*}\right) \leqslant 1 r(A)1),所以 r ( A ∗ ) = 1 r\left(\boldsymbol{A}^{*}\right)=1 r(A)=1

r ( A ) < n − 1 r(\boldsymbol{A})<n-1 r(A)<n1时,由 A A A的秩的定义知, ∣ A ∣ |A| A的代数余子式全部为零,故 r ( A ∗ ) = 0 r\left(A^{*}\right)=0 r(A)=0

  • 注意伴随矩阵、可逆矩阵一定是方阵
  1. A A A n n n阶方针, A 2 = A A^{2}=A A2=A,则 r ( A ) + r ( E − A ) = n r(\boldsymbol{A})+r(\boldsymbol{E}-\boldsymbol{A})=n r(A)+r(EA)=n

证明:由 A 2 = A A^{2}=A A2=A,得 A ( A − E ) = O \boldsymbol{A}(\boldsymbol{A}-\boldsymbol{E})=\boldsymbol{O} A(AE)=O,故 r ( A ) + r ( A − E ) ⩽ n r(\boldsymbol{A})+r(\boldsymbol{A}-\boldsymbol{E}) \leqslant n r(A)+r(AE)n

r ( A ) + r ( A − E ) = r ( A ) + r ( E − A ) ⩾ r ( A + E − A ) = r ( E ) = n r(A)+r(A-E)=r(A)+r(E-A) \geqslant r(A+E-A)=r(E)=n r(A)+r(AE)=r(A)+r(EA)r(A+EA)=r(E)=n,得证 r ( A ) + r ( A − E ) = n r(\boldsymbol{A})+r(\boldsymbol{A}-\boldsymbol{E})=n r(A)+r(AE)=n

  1. A A A n n n阶方针, A 2 = E A^{2}=E A2=E,则 r ( A + E ) + r ( A − E ) = n r(A+E)+r(A-E)=n r(A+E)+r(AE)=n

解析:由题设 A 2 = E A^{2}=E A2=E

( A + E ) ( A − E ) = A 2 − E = O (A+E)(A-E)=A^{2}-E=O (A+E)(AE)=A2E=O

于是有

r ( A + E ) + r ( A − E ) ⩽ n r(A+E)+r(A-E) \leqslant n r(A+E)+r(AE)n

注意到 r ( A − E ) = r ( − A + E ) r(\boldsymbol{A}-\boldsymbol{E})=r(-\boldsymbol{A}+\boldsymbol{E}) r(AE)=r(A+E),则

r ( A + E ) + r ( A − E ) = r ( A + E ) + r ( − A + E ) ⩾ r ( A + E − A + E ) = r ( 2 E ) = n \begin{aligned} r(A+E)+r(A-E) &=r(A+E)+r(-A+E) \\ & \geqslant r(A+E-A+E) \\ &=r(2 E)=n \end{aligned} r(A+E)+r(AE)=r(A+E)+r(A+E)r(A+EA+E)=r(2E)=n

综上所述 r ( A + E ) + r ( A − E ) = n r(A+E)+r(A-E)=n r(A+E)+r(AE)=n得证

  • 12
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 首先,我们需要明确稀疏矩阵和增广矩阵的概念。 稀疏矩阵是指矩阵中大部分元素为零的矩阵。增广矩阵是指将系数矩阵和常数矩阵合并在一起得到的矩阵。 假设我们有一个线性方程组 Ax = b,其中 A 是一个 m × n 的稀疏矩阵,x 和 b 是 n × 1 的向量。我们可以将其表示为增广矩阵 [A | b]。 我们需要证明的是,稀疏矩阵 A 的等于增广矩阵 [A | b] 的。 根据矩阵的定义,矩阵的行(或列)线性无关的最大数目。因此,我们只需要证明 A 的行(或列)和 [A | b] 的行(或列)具有相同的线性无关性即可。 假设 A 的行向量为 a1, a2, ..., am,那么我们可以将增广矩阵 [A | b] 的行表示为: a1 b1 a2 b2 ... ... am bm 其中,b1, b2, ..., bm 是向量 b 的元素。 现在我们假设存在一个线性组合使得 A 的行向量线性相关: k1a1 + k2a2 + ... + kmam = 0 其中,k1, k2, ..., km 不全为零。那么我们将其代入增广矩阵 [A | b] 中得到: k1a1 + k2a2 + ... + kmam = 0 k1b1 + k2b2 + ... + kmbm = 0 由于 k1, k2, ..., km 不全为零,所以增广矩阵 [A | b] 的行向量也是线性相关的。 反之,如果 A 的行向量线性无关,那么增广矩阵 [A | b] 的行向量也是线性无关的。因此,A 的等于增广矩阵 [A | b] 的。 综上所述,我们证明了稀疏矩阵等于增广矩阵。 ### 回答2: 稀疏矩阵是指大部分元素都为0的矩阵。而增广矩阵是在矩阵右边增加一个列向量的操作。 我们要证明稀疏矩阵等于增广矩阵,可以从两个方面进行证明。 首先,对于稀疏矩阵,如果一个向量的所有元素都是0,那么这个向量的为0。因此,当矩阵左边的部分出现全零列时,矩阵不会改变,因为增加了右边非零向量并不会改变左边全零列的。 其次,我们考虑增广矩阵。增广矩阵是将右边增加的列向量合并到矩阵中。假设增广矩阵为r,则表示增广矩阵中至少存在r个线性无关的列向量。即,增广矩阵中至少有r个列向量不可由其他列向量线性表示出来。 我们知道,增广矩阵可以通过列变换得到,且列变换不改变矩阵。因此,我们可以将增广矩阵进行列变换,使得右边的增加的列向量合并到左边的矩阵中,并且保持矩阵不变。 最后,我们得到了一个新的矩阵,它是由稀疏矩阵和增广矩阵合并而成,且保持了矩阵不变。由于矩阵左边部分是稀疏矩阵,因此矩阵只能取决于增广矩阵部分的列向量。 综上所述,我们可以得出稀疏矩阵等于增广矩阵的结论。 ### 回答3: 稀疏矩阵是指矩阵中绝大多数元素为零的矩阵。增广矩阵是指将系数矩阵和常数向量合并在一起形成的矩阵。要证明稀疏矩阵等于增广矩阵,我们可以通过使用行初等变换来将增广矩阵转化为稀疏矩阵。 首先,我们将增广矩阵进行行初等变换,使得第一列的非零元素都在第一行。这样,增广矩阵的第一个非零行就对应了稀疏矩阵的第一个非零行。 然后,我们继续进行行初等变换,将第二列非零元素移动到第二行,并保持上一步的变换结果。这样,增广矩阵的第二个非零行就对应了稀疏矩阵的第二个非零行。 以此类推,我们可以通过行初等变换将增广矩阵转化为稀疏矩阵的形式。 这样做的好处是,行初等变换不改变矩阵。因此,增广矩阵和稀疏矩阵具有相同的。 因此,稀疏矩阵等于增广矩阵
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值