吴恩达机器学习笔记(七)神经网络:代价函数

Neural Networks:Learning

Cost function

逻辑回归代价函数:
J ( θ ) = − 1 m ∑ i = 1 m ( y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ) + λ 2 m ∑ j = 1 m θ j 2 J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}\log(h_\theta(x^{(i)}))+(1-y^{(i)})\log(1-h_\theta(x^{(i)})))+\frac{\lambda}{2m}\sum_{j=1}^{m}\theta_j^2 J(θ)=m1i=1m(y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i))))+2mλj=1mθj2
神经网络代价函数:
J ( θ ) = − 1 m ∑ i = 1 m ∑ k = 1 K ( y k ( i ) log ⁡ ( h θ ( x ( i ) ) ) k + ( 1 − y k ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) k ) + λ 2 m ∑ l = 1 L − 1 ∑ j = 1 m ∑ i = 1 m ( θ j i l ) 2 J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}\sum_{k=1}^{K}(y_k^{(i)}\log(h_\theta(x^{(i)}))_k+(1-y_k^{(i)})\log(1-h_\theta(x^{(i)}))_k)+\frac{\lambda}{2m}\sum_{l=1}^{L-1}\sum_{j=1}^{m}\sum_{i=1}^{m}(\theta_{ji}^{l})^2 J(θ)=m1i=1mk=1K(yk(i)log(hθ(x(i)))k+(1yk(i))log(1hθ(x(i)))k)+2mλl=1L1j=1mi=1m(θjil)2

反向传播算法:Backpropagation algorithm

在这里插入图片描述在这里插入图片描述
反向传播:
intution: δ j ( l ) \delta_j^{(l)} δj(l)=“error” of node j in layer l.
计算: δ j ( l ) \delta_j^{(l)} δj(l) =第 l层第 j个节点的误差(error);
对于每一个输出单元: δ j ( 4 ) = a j ( 4 ) − y j \delta_j^{(4)}=a_j^{(4)}-y_j δj(4)=aj(4)yj ​,
写成向量形式为: δ ( 4 ) = a ( 4 ) − y \delta^{(4)}=a^{(4)}-y δ(4)=a(4)y
由输出层逐级往上计算 δ ( l ) 、 δ ( l − 1 ) … δ ( 2 ) \delta^{(l)}、\delta^{(l-1)}\dots \delta^{(2)} δ(l)δ(l1)δ(2)
δ ( 3 ) = ( Θ ( 3 ) ) T δ ( 4 ) . ∗ g ′ ( z ( 3 ) ) , g ′ ( z ( 3 ) ) = a ( 3 ) . ∗ ( 1 − a ( 3 ) ) δ ( 2 ) = ( Θ ( 2 ) ) T δ ( 3 ) . ∗ g ′ ( z ( 2 ) ) , g ′ ( z ( 2 ) ) = a ( 2 ) . ∗ ( 1 − a ( 2 ) ) \delta^{(3)}=(\Theta^{(3)})^T\delta^{(4)}.*g\prime(z^{(3)}),\qquad g\prime(z^{(3)})=a^{(3)}.*(1-a^{(3)}) \\ \delta^{(2)}=(\Theta^{(2)})^T\delta^{(3)}.*g\prime(z^{(2)}),\qquad g\prime(z^{(2)})=a^{(2)}.*(1-a^{(2)}) δ(3)=(Θ(3))Tδ(4).g(z(3)),g(z(3))=a(3).(1a(3))δ(2)=(Θ(2))Tδ(3).g(z(2)),g(z(2))=a(2).(1a(2))
在这里插入图片描述可以证明(忽略 λ ,即 λ = 0): ∂ ∂ Θ i j ( l ) J ( Θ ) = a j ( l ) δ i ( l + 1 ) \frac{\partial}{\partial\Theta_{ij}^{(l)}}J(\Theta)=a_j^{(l)}\delta_i^{(l+1)} Θij(l)J(Θ)=aj(l)δi(l+1)

原文链接:https://blog.csdn.net/qq_29317617/article/details/86312154

理解反向传播算法:Backpropagation intitutio

具体过程:
在这里插入图片描述
向前传播:
在这里插入图片描述换句话说: δ j ( l ) = ∂ ∂ z j ( l ) c o s t ( i ) f o r ( j ≥ 0 ) \delta_j^{(l)}=\frac{\partial}{\partial z_{j}^{(l)}}cost(i) for(j\geq0) δj(l)=zj(l)cost(i)for(j0)
where c o s t ( i ) = y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) cost(i)=y^{(i)}\log(h_\theta(x^{(i)}))+(1-y^{(i)})\log(1-h_\theta(x^{(i)})) cost(i)=y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))
δ项是代价函数关于这些中间项的偏导数,衡量影响神经网络的权值,进而影响神经网络的输出的程度。
在这里插入图片描述

展开参数:Implementation note:Unrolling parameters

在这里插入图片描述
在这里插入图片描述

梯度检验:Gradient checking

在这里插入图片描述
在这里插入图片描述
实现注意:
在这里插入图片描述

随机初始化:Random initialization

zero initialization:
After each update, parameters corresponding to inputs going into each oftwo hidden units are identical.
如果初始化为0,每次更新后,输入到两个隐藏单元中的输入对应的参数是相同的。

在这里插入图片描述随机初始化:
在这里插入图片描述

组合到一起:Putting it together

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值