关于乘法逆元

什么是逆元?
数论中的倒数—>简称逆元
但是! x的倒数在数论中可不是1/x了
例如
ax=1 当然x是a的倒数
但是如果等号右边不是1呢
a
x=1 mod p x还是1/a嘛
这个时候x就叫做 a关于p的逆元!
总之 假如 x是a的逆元 则a*x=1 mod p;
也就是 模p意义下 1个数a如果有逆元x ,那么除以a相当于乘以x

逆元的作用

(a + b) % p = (a%p + b%p) %p (对)

(a - b) % p = (a%p - b%p) %p (对)

(a * b) % p = (a%p * b%p) %p (对)

(a / b) % p = (a%p / b%p) %p (错)

当我们做题的时候会遇到类似的 (a/b)%p 且 b很大容易爆精度

显然我们 (a / b) % p = (a%p / b%p) %p 是错的
假设 c 是 b 的逆元,就可以得到 b*c=1 mod p
那 (a/b)1%p = (a/b)bc%p = (ac)%p
我们就直接把除法取模转化为乘法取模啦

求逆元的方法
详细

一 扩展欧几里得求逆元

void f(int a,int b,int &x,int &y)
{
	int t;
     if(!b)
     {
   	    x=1;
   	    y=0;
	 } 	
	 else
	 {
	 	f(b,a%b,x,y);
	 	t=x;
	 	x=y;
	 	y=t-a/b*y;
	 }
} 

二 快速幂加费马小定理

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll KSM(ll a,ll b,ll k)
{
	long long ans=1;
	a=a%k;
	while(b>0)
	{
		if(b%2==1)
		   ans=(ans*a)%k;
		b/=2;
		a=(a*a)%k;
	}
	return ans;
} 
int main()
{
    int n,a,p;
	cin>>n;
	while(n--)
	{
		cin>>a>>p; 
		if(a%p==0)
		   cout<<"impossible"<<endl;
		else
		{
			cout<<KSM(a,p-2,p)<<endl;
		}
	}
	return 0;	
} 

例题:杭电1576
题目链接

#include<iostream>
using namespace std;
void f(int a,int b,int &x,int &y)
{
	int t;
     if(!b)
     {
   	    x=1;
   	    y=0;
	 } 	
	 else
	 {
	 	f(b,a%b,x,y);
	 	t=x;
	 	x=y;
	 	y=t-a/b*y;
	 }
}
int main()
{
	int t;
	int n,b,x,y;
	cin>>t;
	while(t--)
	{
		cin>>n>>b;
		f(b,9973,x,y);
		x=x*n;
		x=(x%9973+9973)%9973;
		cout<<x<<endl;
	}
	return 0;
}

关于 mod 与 %
%出来的数有正有负,符号取决于左操作数,而mod只能是正

所以要用%来计算mod的话就要用这样的公式:a mod b = (a % b + b) % b;

括号中的式子可以把左操作数转变为正数
代码里 最后也是防止 x 为负

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值