基于混沌映射的自适应樽海鞘群算法

一、理论基础

1、基本樽海鞘群算法

请参考这里

2、改进的樽海鞘群算法

本文从种群初始化、领导者的位置更新和追随者位置更新三个角度改善算法性能,分别侧重于收敛速度、全局搜索和局部搜索,具体描述如下。

(1)混沌映射

为了更大几率的得到好的初始解位置,加快种群的收敛速度,本文采用具有较好遍历均匀性和更快迭代速度的Tent混沌映射方法,提高初始解的覆盖空间,计算方法如式(1)所示。 y k + 1 i = { 2 y k i     y k i < 0.5 2 ( 1 − y k i ) y k i ≥ 0.5 (1) y_{k+1}^i=\begin{dcases}2y_k^i\quad\quad\quad\,\,\, y_k^i<0.5\\2(1-y_k^i)\quad y_k^i≥0.5\end{dcases}\tag{1} yk+1i={2ykiyki<0.52(1yki)yki0.5(1) x j i = y j i ( ub − lb ) + lb (2) x_j^i=y_j^i(\text{ub}-\text{lb})+\text{lb}\tag{2} xji=yji(ublb)+lb(2)其中, y k i y_k^i yki为区间 [ 0 , 1 ] [0,1] [0,1]的混沌序列,再根据式(2)进行逆映射得到种群的初始位置,这样的混沌映射方法能够大幅度的增大初始解空间的覆盖率,让种群能够更快的靠近最优解,从而加快算法的收敛速度。

(2)自适应权重变化

本文提出了一种新的领导者位置更新方式,在食物源的位置添加自适应权重,具体数学描述如式(3)所示。 x j i = { F j + c 1 F j c 1 ≥ 0.8 F j − c 1 F j c 1 < 0.8 (3) x_j^i=\begin{dcases}F_j+c_1F_j\quad c_1≥0.8\\F_j-c_1F_j\quad c_1<0.8\end{dcases}\tag{3} xji={Fj+c1Fjc10.8Fjc1Fjc1<0.8(3) c 1 = { 2 e − 2 ( T max ⁡ − t ) / T max ⁡ t < T max ⁡ / 2 2 e − 2 t / T max ⁡     t ≥ T max ⁡ / 2 (4) c_1=\begin{dcases}2e^{-2(T_{\max}-t)/T_{\max}}\quad t<T_{\max}/2\\2e^{-2t/T_{\max}}\quad\quad\quad\,\,\, t≥T_{\max}/2\end{dcases}\tag{4} c1={2e2(Tmaxt)/Tmaxt<Tmax/22e2t/TmaxtTmax/2(4)其中, x j i x_j^i xji表示第 i i i个个体在第 j j j维的位置, F j F_j Fj为食物源位置, c 1 c_1 c1为非线性权重, t t t为当前迭代次数, T max ⁡ T_{\max} Tmax为最大迭代次数。

(3)追随者机制变化

针对追随者的位置移动具有一定的盲目性而导致算法易陷入局部最优的这一缺点,本文提出了一种新的追随者移动方式,具体数学描述如式(5)所示。 x j i = { ( x j c 2 + F x j i ) / 2 f ( x j c 2 ) ≤ f ( x j i ) x j i − sin ⁡ ( x j i )       f ( x j c 2 ) > f ( x j i ) (5) x_j^i=\begin{dcases}(x_j^{c_2}+Fx_j^i)/2\quad f(x_j^{c_2})≤f(x_j^i)\\x_j^i-\sin(x_j^i)\quad\,\,\,\,\, f(x_j^{c_2})>f(x_j^i)\end{dcases}\tag{5} xji={(xjc2+Fxji)/2f(xjc2)f(xji)xjisin(xji)f(xjc2)>f(xji)(5)其中, x j i x_j^i xji表示追随者的位置; F F F是权重因子,服从参数为0.5的指数分布; c 2 c_2 c2代表了随机从领导者中选择的个体,如果当前个体 i i i的适应度大于领导者 c 2 c_2 c2的适应度,则在适应度较大的个体位置上添加权重因子,用来降低较差位置个体的影响,进而提升了较优个体的权重;否则,个体 i i i只在自己周围波动。这种移动方式,可以大大的降低盲目追随性,增强了种群间的信息交流,同时还能保留追随者的自身信息,保证种群的多样性。

(4)算法伪代码

本文通过添加混沌映射和自适应权重,同时改变领导者和追随者的位置更新方式,得到了改进的樽海鞘群算法(CASSA) ,平衡了领导者的探索和开发能力,降低了追随者盲目性,更好的保留了个体信息,同时保证种群的多样性,CASSA的具体算法伪代码如下图所示。
在这里插入图片描述

图1 CASSA算法伪代码

二、实验仿真及结果分析

为了验证CASSA算法的性能,将其与基本樽海鞘群算法(SSA)、正弦余弦优化算法(SCA)和鲸鱼优化算法(WOA)进行比较,设置,所有算法d饿最大迭代次数 T max ⁡ = 1000 T_{\max}=1000 Tmax=1000,种群大小 N = 30 N=30 N=30,为了消除算法的偶然性,每个测试函数独立运行30次。以文献[1]中表1的F1(200维)、F4(30维)、F7(100维)、F8(50维)、F10(4维)为例。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
SSA:最差值: 5160.9751,最优值:1963.4063,平均值:3305.0861,标准差:749.7805
SCA:最差值: 79508.7719,最优值:7858.0175,平均值:27131.6781,标准差:16931.5985
WOA:最差值: 7.4832e-142,最优值:5.0371e-161,平均值:2.989e-143,标准差:1.3836e-142
CASSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F4
SSA:最差值: 19.2743,最优值:4.3716,平均值:9.4937,标准差:3.4112
SCA:最差值: 45.5529,最优值:0.80675,平均值:21.1844,标准差:13.6034
WOA:最差值: 88.2095,最优值:0.0025737,平均值:39.2026,标准差:31.0941
CASSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F7
SSA:最差值: 258.4088,最优值:90.0267,平均值:173.884,标准差:34.2091
SCA:最差值: 461.6447,最优值:26.8304,平均值:199.1653,标准差:115.2066
WOA:最差值: 1.1369e-13,最优值:0,平均值:3.7896e-15,标准差:2.0756e-14
CASSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F8
SSA:最差值: 5.768,最优值:1.8031,平均值:3.3611,标准差:0.91712
SCA:最差值: 20.5232,最优值:0.13775,平均值:16.8894,标准差:7.4958
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:4.3225e-15,标准差:2.1847e-15
CASSA:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
函数:F10
SSA:最差值: 0.020363,最优值:0.00054396,平均值:0.0028069,标准差:0.0059568
SCA:最差值: 0.0015427,最优值:0.00036387,平均值:0.0010032,标准差:0.00036804
WOA:最差值: 0.0014992,最优值:0.00031702,平均值:0.00061068,标准差:0.0003328
CASSA:最差值: 0.10783,最优值:0.0031819,平均值:0.031225,标准差:0.027163

结果表明,本文方法相比于其他优化算法具有更好的鲁棒性。

三、参考文献

[1] 童斌斌, 何庆, 陈俊. 基于混沌映射的自适应樽海鞘群算法[J]. 传感技术学报, 2021, 34(1): 41-48.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值