基于混沌映射的自适应樽海鞘群算法
文章目录
摘要:针对樽海鞘群算法收敛速度慢、易陷入局部最优等问题,提出了一种基于混沌映射的自适应樽海鞘群算法。在种群初始化阶段引入混沌映射来增强种群的多样性,提高算法的收敛速度;改进领导者的更新方式,同时加入自适应权重,提高算法的探索和开发能力;改进追随者的位置更新方式,减少追随者的盲目性。
1.樽海鞘群算法
基础樽海鞘群算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/107767869
2.改进樽海鞘群算法
2.1 混沌映射
研究表明, 种群初始化作为群能算法的重要环 节, 初始化的位置的好坏可以直接影响算法的收敛 速度和解质量 , 例如, 均匀分布比随机分布解 空间的覆盖率更全, 更容易得到好的初始解。基本 樽海鞘群算法采用随机种群初始化操作, 无法覆盖 整个解空间。混池序列在一定范围内具有遍历性、 随机性及规律性的特点与随机搜索相比, 混池序列 能以更高的概率对搜索空间进行彻底搜索, 可使算 法跳出局部最优, 保持群体的多样性。
基于以上分析, 为了更大几率的得到好的初始 解位置, 加快种群的收玫速度, 本文采用具有较好遍 历均匀性和更快迭代速度的 Tent 混池映射方法, 提 高初始解的覆盖空间, 计算方法如式 (8) 所示。
y
k
+
1
i
=
{
2
x
k
i
x
k
i
<
0.5
2
(
1
−
x
k
i
)
else
(8)
y_{k+1}^{i}= \begin{cases}2 x_{k}^{i} & x_{k}^{i}<0.5 \\ 2\left(1-x_{k}^{i}\right) & \text { else }\end{cases} \\ \tag{8}
yk+1i={2xki2(1−xki)xki<0.5 else (8)
x
j
i
=
y
k
i
(
u
b
−
l
b
)
+
l
b
(9)
\begin{gathered} x_{j}^{i}=y_{k}^{i}(\mathrm{ub}-\mathrm{lb})+\mathrm{lb} \end{gathered}\tag{9}
xji=yki(ub−lb)+lb(9)
式 (8) 中:
y
k
i
y_{k}^{i}
yki 为区间
[
0
,
1
]
[0,1]
[0,1] 的混沈序列, 再根据 式 (9) 进行逆映射得到种群的初始位置, 这样的混 池映射方法能够大幅度的增大初始解空间的覆盖 率, 让种群能够更快的靠近最优解, 从而加快算法的 收敛速度。
2.2 自适应权重变化
在基本樽海鞘群算法中, 从领导者的位置更新方 式我们可以看出,领导者的位置更新主要受到食物源 和参数
c
1
c_{1}
c1 的影响,
c
1
c_{1}
c1 值越大时有利于算法的探索能 力,
c
1
c_{1}
c1 值越小时, 有利于算法的开发能力, 同时领导者 的位置移动还受到缩放因子
c
2
c_{2}
c2 的影响,
c
2
c_{2}
c2 为均匀分 布的随机数, 这样的缩放因子使得领导者的移动具有 很大的斍目性, 且
c
2
c_{2}
c2 的取值多为无效取值。针对上 述问题, 本文提出了一种新的领导者位置更新方式, 在食物源的位置添加自适应权重, 算法前期权重较 大, 让算法有足够强的探索能力, 随着迭代次数的增 加,权重自适应减小,用于增强算法的局部开发能力, 在算法的中后期, 权重开始增大, 使领导者具备跳出 局部最优的能力, 具体数学描述如式 (10) 所示。
x
j
i
=
{
F
j
+
c
1
F
j
c
1
⩾
0.8
F
j
−
c
1
F
j
c
1
<
0.8
(10)
x_{j}^{i}= \begin{cases}F_{j}+c_{1} F_{j} & c_{1} \geqslant 0.8 \\ F_{j}-c_{1} F_{j} & c_{1}<0.8\end{cases} \\ \tag{10}
xji={Fj+c1FjFj−c1Fjc1⩾0.8c1<0.8(10)
c
1
=
{
2
e
−
(
2
t
/
T
max
)
t
<
T
max
/
2
2
e
−
[
2
(
T
max
−
t
)
/
T
max
]
t
<
T
max
/
2
(11)
\begin{gathered} c_{1}= \begin{cases}2 \mathrm{e}^{-\left(2 t / T_{\max }\right)} & t<T_{\max } / 2 \\ 2 \mathrm{e}^{-\left[2\left(T_{\max }-t\right) / T_{\max }\right]} & t<T_{\max } / 2\end{cases} \end{gathered}\tag{11}
c1={2e−(2t/Tmax)2e−[2(Tmax−t)/Tmax]t<Tmax/2t<Tmax/2(11)
式中:
x
j
i
x_{j}^{i}
xji 表示个体
i
i
i 在捕食空间
j
j
j 维的位置,
F
j
F_{j}
Fj 为食 物源位置,
c
1
c_{1}
c1 为先递减后递增的权重,
t
t
t 代表当前迭 代次数,
T
max
T_{\max }
Tmax 代表最大迭代次数。
2.3 追随者机制变化
在基本樽海鞘群算法中, 追随者根据式(7) 进 行位置更新, 从式中可以看出,第
i
i
i 只个体根据第
i
−
i-
i− 1 只个体进行位置移动, 而没有考虑上一个体适应 度的好与坏, 即追随者的位置移动具有一定的斍目 性,追随者
i
i
i 的位置移动只与个体
i
−
1
i-1
i−1 有关, 缺乏与 其他个体进行信息交流的能力, 这种移动方式极易 导致算法陷入局部最优。针对上述缺点, 本文提出 了一种新的追随者移动方式, 具体数学描述如式 (12) 所示。
x
j
i
=
{
(
x
j
c
2
+
F
x
j
i
)
/
2
f
(
x
j
c
2
)
⩽
f
(
x
j
i
)
x
j
i
−
sin
(
x
j
i
)
f
(
x
j
c
2
)
>
f
(
x
j
i
)
(12)
x_{j}^{i}=\left\{\begin{array}{cl} \left(x_{j}^{c 2}+F x_{j}^{i}\right) / 2 & f\left(x_{j}^{c 2}\right) \leqslant f\left(x_{j}^{i}\right) \\ x_{j}^{i}-\sin \left(x_{j}^{i}\right) & f\left(x_{j}^{c 2}\right)>f\left(x_{j}^{i}\right) \end{array}\right.\tag{12}
xji={(xjc2+Fxji)/2xji−sin(xji)f(xjc2)⩽f(xji)f(xjc2)>f(xji)(12)
式中:
x
j
i
x_{j}^{i}
xji 表示追随者的位置,
F
F
F 是权重因子, 随迭代 次数逐渐递减,
c
2
c 2
c2 代表了随机从领导者中选择的个 体, 如果当前个体
i
i
i 的适应度大于领导者
c
2
c 2
c2 的适应 度, 则在适应度较大的个体位置上添加权重因子, 用 来降低较差位置个体的影响, 进而提升了较优个体 的权重; 否则, 个体
i
i
i 只在自已周围波动。这种移动 方式, 可以大大的降低斍目追随性,增强了种群间的 信息交流,同时还能保留追随者的自身信息,保证种 群的多样性。
3.实验结果
4.参考文献
[1]童斌斌,何庆,陈俊.基于混沌映射的自适应樽海鞘群算法[J].传感技术学报,2021,34(01):41-48.