非线性参数的精英学习灰狼优化算法

该文提出了一种非线性参数的精英学习灰狼优化算法,通过精英反向学习增加种群多样性,非线性调整收敛因子以平衡全局和局部搜索,以及改造位置更新公式提升寻优性能。仿真实验显示,改进算法在多个测试函数上表现出优于其他算法的精度、收敛速度和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、理论基础

1、灰狼优化算法

请参考这里

2、非线性参数的精英学习灰狼优化算法

(1)精英反向学习

精英反向学习(elite opposition-based learning, EOBL)是通过当前问题的可行解构造其反向解,以此来增加种群的多样性,并从当前解和反向解中选取最优解作为新一代个体。
精英反向解定义为:假设种群中个体对应的极值点为精英个体,即 X i , j e = ( X i , 1 e , X i , 2 e , ⋯   , X i , d e ) ,    ( i = 1 , 2 , ⋯   , s ; j = 1 , 2 , ⋯   , d ) X_{i,j}^e=(X_{i,1}^e,X_{i,2}^e,\cdots,X_{i,d}^e),\,\,(i=1,2,\cdots,s;j=1,2,\cdots,d) Xi,je=(Xi,1e,Xi,2e,,Xi,de),(i=1,2,,s;j=1,2,,d),其反向解 X i , j e ‾ = ( X i , 1 e ‾ , X i , 2 e ‾ , ⋯   , X i , d e ‾ ) \overline {X_{i,j}^e}=(\overline{X_{i,1}^e},\overline{X_{i,2}^e},\cdots,\overline{X_{i,d}^e}) Xi,je=(Xi,1e,Xi,2e,,Xi,de)可以表示为: X i , j e ‾ = K ⋅ ( α j + β j ) − X i , j e (1) \overline{X_{i,j}^e}=K\cdot(\alpha_j+\beta_j)-X_{i,j}^e\tag{1} Xi,je=K(αj+βj)Xi,je(1)其中, K K K ( 0 , 1 ) (0,1) (0,1)上的动态系数; X i , j e ∈ [ α j , β j ] , α j = min ⁡ ( X i , j ) , β j = max ⁡ ( X i , j ) X_{i,j}^e\in[\alpha_j,\beta_j],\alpha_j=\min(X_{i,j}),\beta_j=\max(X_{i,j}) Xi,je[αj,βj],αj=min(Xi,j),βj=max(Xi,j) α j \alpha_j αj β j \beta_j βj为动态边界,动态边界克服了固定边界难以保存搜索经验的缺点,使精英反向解可以在狭窄的空间中进行搜索,不易陷于局部最优。若动态边界操作使 X i , j e ‾ \overline{X_{i,j}^e} Xi,je越过边界成为非可行解,可以利用随机生成的方法重置,重置方式如下: X i , j e ‾ = rand ( α j , β j ) (2) \overline{X_{i,j}^e}=\text{rand}(\alpha_j,\beta_j)\tag{2} Xi,je=rand(αj,βj)(2)

(2)调整收敛因子 a a a

由于算法搜索过程复杂,收敛因子 a a a随迭代次数增加线性递减,该更新方法很难适应实际搜索情况,并不能完全说明实际收敛寻优过程,在全局搜索和局部寻优之间得不到有力协调。因此,本文采用非线性调整的策略,即: a = a initial − ( a initial − a final ) ⋅ exp ⁡ ( t / t max ⁡ − 1 ) (3) a=a_{\text{initial}}-(a_{\text{initial}}-a_{\text{final}})\cdot\exp(t/t_{\max}-1)\tag{3} a=ainitial(ainitialafinal)exp(t/tmax1)(3)其中, a initial a_{\text{initial}} ainitial a final a_{\text{final}} afinal分别为 a a a的初始值和终止值; t t t为当前迭代次数; t max ⁡ t_{\max} tmax为最大迭代次数。收敛因子 a a a随着迭代次数不断增加呈现非线性动态变化,相比较线性变化有效地平衡算法的全局搜索能力和局部寻优能力,进而提高算法的寻优性能。

(3)改造位置更新公式

为进一步平衡GWO算法的全局搜索能力和局部寻优能力,受差分进化算法的启发,再结合GWO算法的更新原则,本文设计出一种新的位置更新公式,即: X ( t + 1 ) = r 1 ( X 1 − X t ) + r 2 ( X 2 − X t ) + r 3 ( X 3 − X t ) 3 (4) X(t+1)=\frac{r_1(X_1-X_t)+r_2(X_2-X_t)+r_3(X_3-X_t)}{3}\tag{4} X(t+1)=3r1(X1Xt)+r2(X2Xt)+r3(X3Xt)(4)其中, r 1 , r 2 , r 3 ∈ [ 0 , 1 ] r_1,r_2,r_3\in[0,1] r1,r2,r3[0,1]的随机数; X 1 X_1 X1 X 2 X_2 X2 X 3 X_3 X3分别表示 α \alpha α β \beta β δ \delta δ狼所经历的最佳位置。 X t X_t Xt为群体中任一个体,采用式(4)的更新方法产生新个体,该方法有效帮助算法降低陷入局部最优的可能性,防止早熟现象的发生。

(4)算法步骤

为了改善算法的搜索精度低,收敛速度慢的缺陷,本文结合精英反向学习策略达到增加种群的多样性的目的,使灰狼个体可以更广泛的分布于搜索空间的各个位置,从而使算法的全局搜索能力得到明显提高,对参数 a a a进行非线性变化,以及改造位置更新公式,提高算法的局部寻优能力。因此,改进的灰狼优化算法有效的平衡算法的全局搜索能力和局部寻优能力。具体算法描述如下:
Step 1:设置相关参数 A A A a a a C C C;种群规模 N N N;最大迭代次数 T max ⁡ T_{\max} Tmax;搜索维度 D D D;搜索范围 [ l b , u b ] [lb,ub] [lb,ub]
Step 2:根据精英反向学习策略进行种群个体的初始化。
Step 3:计算灰狼个体的适应度值,保存适应度值最好的前三匹狼记为 α \alpha α β \beta β δ \delta δ
Step 4:根据原始公式依次对参数 C C C A A A a a a进行更新。
Step 5:根据原始公式计算种群中灰狼个体与最优的前三匹狼 α \alpha α β \beta β δ \delta δ的距离,根据原始公式更新当前灰狼位置,根据公式(4)更新猎物位置。
Step 6:判断是否满足最大迭代次数,若满足输出结果,即为最优灰狼位置, 否则返回步骤Step 3。

二、仿真实验与分析

为验证改进灰狼算法(IGWO)的有效性,与花授粉算法(FPA)、布谷鸟算法(CS)、粒子群算法(PSO)、多元宇宙算法(MVO)、基本灰狼优化算法(GWO)进行比较,设置种群规模 N = 30 N=30 N=30,函数维度 D = 30 D=30 D=30,最大迭代次数 T max ⁡ = 500 T_{\max}=500 Tmax=500,每个算法独立运行30次,以文献[1]表1的8个测试函数为例。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
FPA:最差值: 168.3013,最优值:34.9312,平均值:80.9799,标准差:34.6431
CS:最差值: 14.0062,最优值:3.7984,平均值:8.1488,标准差:2.7794
MVO:最差值: 2.4107,最优值:0.72127,平均值:1.3026,标准差:0.35217
PSO:最差值: 4.413,最优值:0.74616,平均值:1.8433,标准差:0.82089
GWO:最差值: 1.9984e-26,最优值:6.9611e-29,平均值:2.194e-27,标准差:3.7847e-27
IGWO:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F2
FPA:最差值: 19.2092,最优值:5.9525,平均值:9.5096,标准差:3.0063
CS:最差值: 15.5864,最优值:5.5388,平均值:9.7193,标准差:3.0539
MVO:最差值: 1.7323,最优值:0.47645,平均值:0.81395,标准差:0.3043
PSO:最差值: 12.809,最优值:3.3181,平均值:6.5001,标准差:2.3706
GWO:最差值: 2.4478e-16,最优值:1.5274e-17,平均值:9.0732e-17,标准差:5.2936e-17
IGWO:最差值: 1.5918e-230,最优值:8.4555e-241,平均值:1.2428e-231,标准差:0
函数:F3
FPA:最差值: 25228.4812,最优值:10645.5643,平均值:16438.7684,标准差:3721.4663
CS:最差值: 2986.1359,最优值:1027.7705,平均值:1952.9758,标准差:478.9544
MVO:最差值: 352.7823,最优值:50.0586,平均值:180.4512,标准差:77.0248
PSO:最差值: 473.8862,最优值:66.618,平均值:153.1108,标准差:91.7718
GWO:最差值: 0.00010796,最优值:1.8327e-08,平均值:8.2628e-06,标准差:2.0083e-05
IGWO:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F4
FPA:最差值: 19.6002,最优值:8.9581,平均值:13.9992,标准差:2.6048
CS:最差值: 12.7503,最优值:7.0007,平均值:10.2783,标准差:1.3997
MVO:最差值: 3.5219,最优值:0.91185,平均值:1.8516,标准差:0.6216
PSO:最差值: 7.5749,最优值:2.2017,平均值:5.0985,标准差:1.4818
GWO:最差值: 2.0292e-06,最优值:1.0013e-07,平均值:7.039e-07,标准差:5.5707e-07
IGWO:最差值: 9.9718e-184,最优值:7.4785e-239,平均值:5.1654e-185,标准差:0
函数:F5
FPA:最差值: 0.21732,最优值:0.054616,平均值:0.10521,标准差:0.037869
CS:最差值: 0.18438,最优值:0.024218,平均值:0.085515,标准差:0.03503
MVO:最差值: 0.070233,最优值:0.013329,平均值:0.032054,标准差:0.014479
PSO:最差值: 10.8796,最优值:0.0083316,平均值:0.91067,标准差:2.248
GWO:最差值: 0.0048708,最优值:0.00039332,平均值:0.0020448,标准差:0.0010169
IGWO:最差值: 0.00040318,最优值:8.3982e-07,平均值:7.712e-05,标准差:8.7563e-05
函数:F6
FPA:最差值: 190.798,最优值:135.8942,平均值:170.9258,标准差:11.9495
CS:最差值: 136.6317,最优值:76.299,平均值:107.2554,标准差:14.16
MVO:最差值: 178.8283,最优值:69.1477,平均值:117.5893,标准差:27.0544
PSO:最差值: 139.743,最优值:58.7724,平均值:86.8488,标准差:19.4839
GWO:最差值: 14.2336,最优值:5.6843e-14,平均值:2.6416,标准差:3.8266
IGWO:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F7
FPA:最差值: 17.5116,最优值:5.0019,平均值:10.3707,标准差:3.3026
CS:最差值: 10.7114,最优值:3.8336,平均值:6.5398,标准差:1.8973
MVO:最差值: 3.3885,最优值:0.81642,平均值:1.8998,标准差:0.57213
PSO:最差值: 6.3274,最优值:2.3441,平均值:4.0452,标准差:0.95086
GWO:最差值: 1.3944e-13,最优值:7.5495e-14,平均值:1.0309e-13,标准差:1.7221e-14
IGWO:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
函数:F8
FPA:最差值: 2.2098,最优值:1.224,平均值:1.6828,标准差:0.20079
CS:最差值: 1.1841,最优值:1.0257,平均值:1.0827,标准差:0.040439
MVO:最差值: 0.96178,最优值:0.64005,平均值:0.86152,标准差:0.075037
PSO:最差值: 15.9639,最优值:2.5974,平均值:7.1234,标准差:2.9453
GWO:最差值: 0.025508,最优值:0,平均值:0.0040721,标准差:0.0079973
IGWO:最差值: 0,最优值:0,平均值:0,标准差:0

实验结果表明,改进后的灰狼优化算法在精度、收敛速度和稳定性方面优于其他算法。

三、参考文献

[1] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值