一、实现过程
1、准备数据
与PyTorch实现多维度特征输入的逻辑回归的方法不同的是:本文使用DataLoader方法,并继承DataSet抽象类,可实现对数据集进行mini_batch梯度下降优化。代码如下:
import torch
import numpy as np
from torch.utils.data import Dataset,DataLoader
class DiabetesDataSet(Dataset):
def __init__(self, filepath):
xy = np.loadtxt(filepath,delimiter=',',dtype=np.float32)
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:,:-1])
self.y_data = torch.from_numpy(xy[:,[