PyTorch实现简单的残差网络

一、实现过程

残差网络(Residual Network)的特点是容易优化,并且能够通过增加相当的深度来提高准确率。其内部的残差块使用了跳跃连接,缓解了在深度神经网络中增加深度带来的梯度消失问题。
本文实现如图1所示的两层残差模块用于识别MNIST数据集,其中每一层均是卷积层。
在这里插入图片描述

图1 残差构建模块

残差构建模块封装成类,代码如下:

class ResidualBlock(torch.nn.Module):
    def __init__(self,channels):
        super(ResidualBlock,self).__init__()
        self.channels = channels
        
        self.conv1 = torch.nn.Conv2d(channels,channels,kernel_size=3,padding=1)
        self.conv2 = torch.nn.Conv2d(channels,channels,kernel_size=3,padding=1)
    
    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x+y)

嵌入残差模块的网络模型代码如下:

class Net(torch.nn.Module):
    def __init__(self):
        super(Net,self).
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值