融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法

一、理论基础

1、阿奎拉鹰优化算法

请参考这里

2、哈里斯鹰优化算法

请参考这里

3、动态反向学习策略

对于元启发式优化算法来说,种群初始化往往是在搜索空间内随机生成的,只能保证种群在搜索空间内的分散程度,无法保证初始解的质量。然而,研究表明初始化的好坏将直接影响算法的收敛速度和解的精度。基于此问题,国内外学者将多种策略引入初始化部分,以提高算法初始化性能,常见的有混沌初始化、反向学习和柯西随机生成等。本文引入动态反向学习策略,提高初始化解的质量,计算方法如下为: X DOBL = X init + r 1 × ( r 2 × ( L B + U B − X init ) − X init ) (1) X_{\text{DOBL}}=X_{\text{init}}+r_1\times\left(r_2\times\left(LB+UB-X_{\text{init}}\right)-X_{\text{init}}\right)\tag{1} XDOBL=Xinit+r1×(r2×(LB+UBXinit)Xinit)(1)其中, X init X_{\text{init}} Xinit代表通过随机生成的初始化种群; r 1 r_1 r1 r 2 r_2 r2均为分布在0到1之间的随机数。首先,算法分别生成原始初始化种群 X init X_{\text{init}} Xinit与反向初始种群 X DOBL X_{\text{DOBL}} XDOBL,然后将两个种群合并为新种群 X new = { X DOBL ∪ X init } X_{\text{new}}=\{X_{\text{DOBL}}\cup X_{\text{init}}\} Xnew={XDOBLXinit}。计算新种群的适应度值,并利用贪婪策略使种群内部充分竞争,选取最佳的 N N N个个体作为初始化种群。通过此方法能够让种群更快的靠近最优解,从而提升算法的收敛速度。

4、融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法

(1)改进混合算法步骤

改进混合算法DAHHO步骤如下:
步骤1. 初始化种群,计算动态反向学习种群,根据贪婪策略保留较优个体进入主程序迭代。
步骤2. 计算种群适应度值,记录较优个体。
步骤3. 如果 ∣ E ∣ ≥ 1 |E|\geq1 E1,个体随机选择式(1)或式(3)开始探索行为。
步骤4. 如果 ∣ E ∣ < 1 |E|<1 E<1,种群根据逃逸猎物能量值与适应度值选择开发策略。
\quad\quad 策略1. 软包围。当 r 16 ≥ 0.5 r_{16}\geq0.5 r160.5 ∣ E ∣ ≥ 0.5 |E|\geq0.5 E0.5,子群个体采用式(11)更新位置。
\quad\quad 策略2. 硬包围。当 r 16 ≥ 0.5 r_{16}\geq0.5 r160.5 ∣ E ∣ < 0.5 |E|<0.5 E<0.5,子群个体采用式(14)更新位置。
\quad\quad 策略3. 渐进式快速俯冲软包围。当 r 16 < 0.5 r_{16}<0.5 r16<0.5 ∣ E ∣ ≥ 0.5 |E|\geq0.5 E0.5,子群个体采用式(15, 16, 17)更新位置。
\quad\quad 策略4. 渐进式快速俯冲硬包围。当 r 16 < 0.5 r_{16}<0.5 r16<0.5 ∣ E ∣ < 0.5 |E|<0.5 E<0.5,子群个体采用式(16, 17, 18)更新位置。
步骤5. 判断程序是否满足终止条件,满足则跳出循环,否则返回步骤2。
步骤6. 输出最佳位置及适应度值。

(2)计算复杂度分析

DAHHO计算复杂度主要取决于以下三个过程:动态反向学习初始化,适应度评估以及种群位置更新。假设种群规模为 N N N,则初始化计算复杂度为 O ( 2 × N ) O(2\times N) O(2×N)。评价最佳位置以及更新种群位置向量的计算复杂度为 O ( N × T + N × T × D ) O(N\times T+N\times T\times D) O(N×T+N×T×D)。综上所述,DAHHO的计算复杂度为 O ( N × ( 2 + T + T × D ) ) O(N\times (2+T+T\times D)) O(N×(2+T+T×D))。考虑到NFL定理,增加一些额外的计算复杂度来获取更好的解决方案是可取的。

二、实验仿真与分析

将DAHHO与AO、HHO、SSA、WOA、SCA、MVO和GWO进行对比,以常用23个测试函数中的F4、F5(单峰函数/30维)、F11、F12(多峰函数/30维)、F19、F20(固定维度多峰函数/3维、6维)为例,实验设置种群规模为30,最大迭代次数为500,每种算法独立运算30次,结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F4
DAHHO:最差值: 1.1448e-120, 最优值: 2.5451e-132, 平均值: 7.9133e-122, 标准差: 2.2808e-121, 秩和检验: 1
AO:最差值: 3.4883e-58, 最优值: 2.2647e-79, 平均值: 1.1629e-59, 标准差: 6.3687e-59, 秩和检验: 3.0199e-11
HHO:最差值: 1.486e-47, 最优值: 1.2658e-57, 平均值: 5.0871e-49, 标准差: 2.7106e-48, 秩和检验: 3.0199e-11
SSA:最差值: 18.3308, 最优值: 6.6736, 平均值: 11.3412, 标准差: 2.7763, 秩和检验: 3.0199e-11
WOA:最差值: 83.3169, 最优值: 2.0983, 平均值: 45.4455, 标准差: 28.4264, 秩和检验: 3.0199e-11
SCA:最差值: 62.5664, 最优值: 18.2128, 平均值: 36.1108, 标准差: 10.8684, 秩和检验: 3.0199e-11
MVO:最差值: 5.1286, 最优值: 1.0596, 平均值: 2.2109, 标准差: 1.0788, 秩和检验: 3.0199e-11
GWO:最差值: 3.067e-06, 最优值: 1.0531e-07, 平均值: 6.6996e-07, 标准差: 7.8541e-07, 秩和检验: 3.0199e-11
函数:F5
DAHHO:最差值: 0.089985, 最优值: 1.5822e-06, 平均值: 0.0053932, 标准差: 0.016638, 秩和检验: 1
AO:最差值: 0.01463, 最优值: 7.7425e-05, 平均值: 0.0020187, 标准差: 0.0030768, 秩和检验: 0.40354
HHO:最差值: 0.087886, 最优值: 3.0252e-05, 平均值: 0.013273, 标准差: 0.01773, 秩和检验: 4.084e-05
SSA:最差值: 1005.3687, 最优值: 25.7616, 平均值: 186.3118, 标准差: 223.5295, 秩和检验: 3.0199e-11
WOA:最差值: 28.7797, 最优值: 27.2047, 平均值: 28.0633, 标准差: 0.4671, 秩和检验: 3.0199e-11
SCA:最差值: 278965.312, 最优值: 186.8166, 平均值: 38459.3734, 标准差: 75461.0467, 秩和检验: 3.0199e-11
MVO:最差值: 2259.7661, 最优值: 36.3849, 平均值: 359.6763, 标准差: 562.5061, 秩和检验: 3.0199e-11
GWO:最差值: 28.7643, 最优值: 26.0273, 平均值: 27.1439, 标准差: 0.85692, 秩和检验: 3.0199e-11
函数:F11
DAHHO:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
AO:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
HHO:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
SSA:最差值: 0.044636, 最优值: 0.0001397, 平均值: 0.015584, 标准差: 0.010806, 秩和检验: 1.2118e-12
WOA:最差值: 0.28789, 最优值: 0, 平均值: 0.014684, 标准差: 0.058636, 秩和检验: 0.1608
SCA:最差值: 1.3721, 最优值: 0.18433, 平均值: 0.89206, 标准差: 0.30749, 秩和检验: 1.2118e-12
MVO:最差值: 1.0033, 最优值: 0.66443, 平均值: 0.86449, 标准差: 0.084799, 秩和检验: 1.2118e-12
GWO:最差值: 0.034059, 最优值: 0, 平均值: 0.0056433, 标准差: 0.010229, 秩和检验: 0.002788
函数:F12
DAHHO:最差值: 9.2903e-06, 最优值: 2.3631e-09, 平均值: 1.0596e-06, 标准差: 1.9276e-06, 秩和检验: 1
AO:最差值: 9.0249e-06, 最优值: 8.2443e-09, 平均值: 2.4373e-06, 标准差: 2.5738e-06, 秩和检验: 0.004033
HHO:最差值: 2.2955e-05, 最优值: 2.5543e-12, 平均值: 5.758e-06, 标准差: 6.6168e-06, 秩和检验: 0.00010407
SSA:最差值: 21.4492, 最优值: 2.6682, 平均值: 8.2306, 标准差: 4.5551, 秩和检验: 3.0199e-11
WOA:最差值: 0.10879, 最优值: 0.0036595, 平均值: 0.025439, 标准差: 0.021631, 秩和检验: 3.0199e-11
SCA:最差值: 3425121.4295, 最优值: 1.5843, 平均值: 205825.9541, 标准差: 759498.7867, 秩和检验: 3.0199e-11
MVO:最差值: 4.4777, 最优值: 0.35481, 平均值: 2.2656, 标准差: 1.2455, 秩和检验: 3.0199e-11
GWO:最差值: 0.086289, 最优值: 0.011838, 平均值: 0.044186, 标准差: 0.021927, 秩和检验: 3.0199e-11
函数:F19
DAHHO:最差值: -3.8619, 最优值: -3.8628, 平均值: -3.8627, 标准差: 0.00017311, 秩和检验: 1
AO:最差值: -3.7056, 最优值: -3.8627, 平均值: -3.8458, 标准差: 0.034729, 秩和检验: 3.1589e-10
HHO:最差值: -3.8627, 最优值: -3.8628, 平均值: -3.8628, 标准差: 1.3823e-05, 秩和检验: 0.48252
SSA:最差值: -3.8628, 最优值: -3.8628, 平均值: -3.8628, 标准差: 2.4013e-10, 秩和检验: 3.0199e-11
WOA:最差值: -3.8477, 最优值: -3.8628, 平均值: -3.8587, 标准差: 0.0047386, 秩和检验: 3.4742e-10
SCA:最差值: -3.8411, 最优值: -3.8585, 平均值: -3.8528, 标准差: 0.0029211, 秩和检验: 3.0199e-11
MVO:最差值: -3.8628, 最优值: -3.8628, 平均值: -3.8628, 标准差: 3.5765e-06, 秩和检验: 0.00018916
GWO:最差值: -3.8549, 最优值: -3.8628, 平均值: -3.8618, 标准差: 0.0020159, 秩和检验: 4.7445e-06
函数:F20
DAHHO:最差值: -3.2014, 最优值: -3.322, 平均值: -3.3059, 标准差: 0.04134, 秩和检验: 1
AO:最差值: -3.0759, 最优值: -3.3193, 平均值: -3.2461, 标准差: 0.077339, 秩和检验: 4.6856e-08
HHO:最差值: -3.1837, 最优值: -3.322, 平均值: -3.2848, 标准差: 0.057667, 秩和检验: 0.71719
SSA:最差值: -3.1615, 最优值: -3.322, 平均值: -3.2327, 标准差: 0.060087, 秩和检验: 0.013272
WOA:最差值: -3.1106, 最优值: -3.3219, 平均值: -3.2554, 标准差: 0.080892, 秩和检验: 1.8731e-07
SCA:最差值: -1.9171, 最优值: -3.1315, 平均值: -2.9316, 标准差: 0.24295, 秩和检验: 3.0199e-11
MVO:最差值: -3.191, 最优值: -3.322, 平均值: -3.2657, 标准差: 0.06121, 秩和检验: 0.43764
GWO:最差值: -3.1372, 最优值: -3.322, 平均值: -3.2796, 标准差: 0.067659, 秩和检验: 0.0066689

结果表明引入动态反向学习的混合算法收敛性能更佳,能够有效求解优化问题。

三、参考文献

[1] 贾鹤鸣, 刘庆鑫, 刘宇翔, 等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J]. 智能系统学报, 2023, 18(1): 104-116.

  • 1
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值