融合黄金正弦混合变异的自适应樽海鞘群算法

一、理论基础

1、樽海鞘群算法

请参考这里

2、樽海鞘群算法的改进

(1)精英个体引导和自适应权重

本文提出了一种结合精英个体引导和自适应权重的改进策略,该方法中,追随者的更新由式(1)、(2)完成。 x j i = { 1 2 ( w ( t ) × x j i + ( 1 − w ( t ) ) × x j i − 1 ) , f ( x j i − 1 ) < f ( x j i ) 1 2 ( x j i + x j i − 1 ) ,      f ( x j i − 1 ) = f ( x j i ) 1 2 ( ( 1 − w ( t ) ) × x j i + w ( t ) × x j i − 1 ) , f ( x j i − 1 ) > f ( x j i ) (1) x_j^i=\begin{dcases}\frac12\left(w(t)×x_j^i+(1-w(t))×x_j^{i-1}\right),\quad f(x_j^{i-1})<f(x_j^{i})\\\frac12\left(x_j^i+x_j^{i-1}\right),\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, f(x_j^{i-1})=f(x_j^{i})\\\frac12\left((1-w(t))×x_j^i+w(t)×x_j^{i-1}\right),\quad f(x_j^{i-1})>f(x_j^{i})\end{dcases}\tag{1} xji=21(w(t)×xji+(1w(t))×xji1),f(xji1)<f(xji)21(xji+xji1),f(xji1)=f(xji)21((1w(t))×xji+w(t)×xji1),f(xji1)>f(xji)(1) w ( t ) = w s − ( w s − w f ) × 2 π arcsin ⁡ t T max ⁡ (2) w(t)=w_s-(w_s-w_f)×\frac2\pi\arcsin\frac{t}{T_{\max}}\tag{2} w(t)=ws(wswf)×π2arcsinTmaxt(2)其中, w ( t ) w(t) w(t)为自适应递减的权重因子, f ( ∗ ) f(*) f()为个体的适应度值, w s w_s ws w f w_f wf分别为权重因子的初始值和最终值,经过多次实验发现,当 w s w_s ws取0.5, w f w_f wf取0.1时,算法的寻优结果最好。为了更直观地看出权重因子的变化过程,图1给出了 w w w随迭代过程的变化曲线图。
在这里插入图片描述

图1 权重因子迭代曲线

由式(1)、(2)和图1可知,随着迭代过程的进行, w w w将从 w s w_s ws逐渐减小到 w f w_f wf,非精英个体所占的权重将随之逐渐减小,而精英个体所占的权重将逐渐增大,追随者将始终以精英个体为导向进行移动,从而降低其因盲目跟随前一个个体而错过较优位置的几率,提升算法的收敛速度与精度。

(2)黄金正弦领导策略

本文将黄金正弦算法作为一种优化算子引入到SSA算法中以改变领导者移动方式,在AGHSSA中,领导者的位置更新由下式完成: x j i = x j i × ∣ sin ⁡ R 1 ∣ − R 2 × sin ⁡ R 1 × ∣ x 1 × F j − x 2 × x j i ∣ (3) x_j^i=x_j^i×|\sin R_1|-R_2×\sin R_1×|x_1×F_j-x_2×x_j^i|\tag{3} xji=xji×sinR1R2×sinR1×x1×Fjx2×xji(3)其中, R 1 R_1 R1 R 2 R_2 R2为随机数, R 1 R_1 R1决定下一次迭代中个体的移动距离, R 1 ∈ [ 0 , 2 π ] R_1\in[0,2\pi] R1[0,2π] R 2 R_2 R2决定下一次迭代第 i i i个个体的位置更新方向, R 2 ∈ [ 0 , π ] R_2\in[0,\pi] R2[0,π] x 1 x_1 x1 x 2 x_2 x2是通过引入黄金分割数得到的系数,这些系数缩小了搜索空间引领个体逐步趋近最优值,保证了算法的收敛性,黄金分割数是一个定义为 5 − 1 2 \frac{\sqrt5-1}{2} 25 1的无理数,记为 τ \tau τ x 1 = − π + ( 1 − τ ) × 2 π x_1=-\pi+(1-\tau)×2\pi x1=π+(1τ)×2π x 2 = − π + τ × 2 π x_2=-\pi+\tau×2\pi x2=π+τ×2π
黄金正弦领导策略能够有效改善基本SSA算法中存在的不足,并且具备被移植到基本SSA算法中的条件,由此可以得出结论,黄金正弦领导策略适用于樽海鞘群算法。

(3)邻域重心反向学习与柯西变异

(1)邻域重心反向学习
为了更好地引导个体寻优,本文将邻域重心反向学习融入到基本SSA中。
设当前迭代的最优解(食物源)位置为 F ( F = ( F 1 , F 2 , ⋯   , F D ) ) F(F=(F_1,F_2,\cdots,F_D)) F(F=(F1,F2,,FD)),邻域重心 M M M为整个樽海鞘种群的重心,则其经邻域重心反向学习后的解 F ˘ ( F ˘ = ( F ˘ 1 , F ˘ 2 , ⋯   , F ˘ D ) ) \breve F(\breve F=(\breve F_1,\breve F_2,\cdots,\breve F_D)) F˘(F˘=(F˘1,F˘2,,F˘D))的计算方式如下: F ˘ = 2 × k × M − F (4) \breve F=2×k×M-F\tag{4} F˘=2×k×MF(4) M = x 1 + x 2 + ⋯ + x n n (5) M=\frac{x_1+x_2+\cdots+x_n}{n}\tag{5} M=nx1+x2++xn(5)其中, k k k [ 0 , 1 ] [0,1] [0,1]区间内均匀分布的随机数。
(2)柯西变异
本文将柯西变异算子引入到SSA中对食物源位置进行扰动,计算方式如下: F ′ = F + F × C a u c h y ( 0 , 1 ) (6) F'=F+F×Cauchy(0,1)\tag{6} F=F+F×Cauchy(0,1)(6)其中, F ′ F' F为食物源经柯西变异后产生的新位置。
(3)混合变异
为提升算法寻优能力,AGHSSA将等概率的交替执行邻域重心反向学习策略和柯西扰动策略,动态地更新食物源位置,混合变异计算方式如下: F n e w = { 2 × k × M − F , R 3 < 0.5 F + F × C a u c h y ( 0 , 1 ) , R 3 ≥ 0.5 (7) F_{new}=\begin{dcases}2×k×M-F,\quad\quad\quad\quad R_3<0.5\\F+F×Cauchy(0,1),\quad R_3≥0.5\end{dcases}\tag{7} Fnew={2×k×MF,R3<0.5F+F×Cauchy(0,1),R30.5(7)其中, R 3 R_3 R3 [ 0 , 1 ] [0,1] [0,1]区间内均匀分布的随机数, F n e w F_{new} Fnew为食物源经混合变异后产生的新位置。
为了进一步提升算法收敛精度,AGHSSA在混合变异完成后将依据贪婪原则决定是否更新食物源位置,即当变异后个体的适应度优于原个体时,才对食物源进行位置更新,否则保留原食物源位置信息。

(4)算法描述

AGHSSA算法的具体执行步骤如下:
步骤1 设置种群规模 N N N,最大迭代次数 T max ⁡ T_{\max} Tmax,问题维数 D D D,权重因子初始值 w s w_s ws和最终值 w f w_f wf
步骤2 初始化樽海鞘群,计算种群内每个个体的适应度值并排序,记录当前最优个体的位置及其适应度值,将其作为食物源。
步骤3 更新领导者和追随者位置。生成随机数 R 1 R_1 R1 R 2 R_2 R2,根据式(2)更新权重因子 w w w,选取种群中前一半樽海鞘个体按式(3)更新领导者位置,另一半个体按式(1)更新追随者位置。
步骤4 计算更新后种群的适应度值,并更新食物源位置。
步骤5 混合变异。生成随机数 k k k R 3 R_3 R3,按式(5)计算种群重心 M M M,通过式(7)对步骤4得到的解(食物源)进行变异产生一个新解,并用目标函数对得到的新解进行评估,如果新解的适应度值比原解更好,则用新解代替原来的解,否则保留原解。
步骤6 重复步骤3~5,如果达到最大迭代次数,则终止算法,输出全局最优解。

二、仿真实验结果与分析

本文选取了基本樽海鞘群算法(SSA)、基本鲸鱼算法(WOA)、基本蝴蝶优化算法(BOA)与本文算法AGHSSA进行对比,为体现实验的公平性,将所有算法的种群规模设置为40,最大迭代次数为1000,每个算法独立运行30次,其余各算法的具体参数设置与相应的文献一致。以文献[1]中30维(F5为2维)的F1、F2、F3、F5、F8、F9、F10、F11为例。
结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
SSA:最差值: 1.4875e-08,最优值:7.5145e-09,平均值:1.0231e-08,标准差:2.1408e-09
WOA:最差值: 1.5352e-164,最优值:7.506e-185,平均值:9.7909e-166,标准差:0
BOA:最差值: 1.9301e-14,最优值:1.5159e-14,平均值:1.7465e-14,标准差:1.0089e-15
AGHSSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F2
SSA:最差值: 3.9261,最优值:0.003065,平均值:0.67195,标准差:0.87849
WOA:最差值: 9.8563e-107,最优值:8.1914e-118,平均值:7.3371e-108,标准差:2.3892e-107
BOA:最差值: 1.148e-11,最优值:2.6339e-12,平均值:9.8722e-12,标准差:2.4076e-12
AGHSSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F3
SSA:最差值: 619.3934,最优值:29.9383,平均值:139.1345,标准差:117.5736
WOA:最差值: 29363.9582,最优值:2150.6508,平均值:14099.8192,标准差:7908.9541
BOA:最差值: 1.9464e-14,最优值:1.5512e-14,平均值:1.7468e-14,标准差:9.1192e-16
AGHSSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F5
SSA:最差值: 1.6166e-15,最优值:7.9188e-18,平均值:3.1331e-16,标准差:3.7451e-16
WOA:最差值: 0,最优值:0,平均值:0,标准差:0
BOA:最差值: 2.4613e-15,最优值:4.5192e-21,平均值:1.4005e-15,标准差:5.5476e-16
AGHSSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F8
SSA:最差值: 1.6858,最优值:0.00030079,平均值:0.17157,标准差:0.35396
WOA:最差值: 612.6238,最优值:313.7488,平均值:458.6354,标准差:82.7523
BOA:最差值: 1.8773e-14,最优值:1.4528e-14,平均值:1.6939e-14,标准差:1.0995e-15
AGHSSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F9
SSA:最差值: 107.4553,最优值:23.879,平均值:53.9267,标准差:18.109
WOA:最差值: 5.6843e-14,最优值:0,平均值:1.8948e-15,标准差:1.0378e-14
BOA:最差值: 179.5808,最优值:0,平均值:5.986,标准差:32.7868
AGHSSA:最差值: 0,最优值:0,平均值:0,标准差:0
函数:F10
SSA:最差值: 3.7857,最优值:2.2838e-05,平均值:1.9184,标准差:0.86873
WOA:最差值: 7.9936e-15,最优值:8.8818e-16,平均值:4.6777e-15,标准差:2.6279e-15
BOA:最差值: 1.354e-11,最优值:2.6157e-12,平均值:1.1113e-11,标准差:2.044e-12
AGHSSA:最差值: 8.8818e-16,最优值:8.8818e-16,平均值:8.8818e-16,标准差:0
函数:F11
SSA:最差值: 0.02461,最优值:2.0881e-08,平均值:0.006977,标准差:0.0085766
WOA:最差值: 0.05678,最优值:0,平均值:0.0043751,标准差:0.013689
BOA:最差值: 5.107e-15,最优值:0,平均值:1.0917e-15,标准差:1.3952e-15
AGHSSA:最差值: 0,最优值:0,平均值:0,标准差:0

结果表明,本文所提出的改进策略可以显著提升SSA算法的寻优能力,相比于其他较新的群智能优化算法仍然具有较强的竞争力。

三、参考文献

[1] 周新, 邹海. 融合黄金正弦混合变异的自适应樽海鞘群算法[J]. 计算机工程与应用, 2021, 57(12): 75-85.

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值