基于瞬态搜索优化算法的函数寻优及工程优化应用

本文介绍了一种新的元启发式优化算法——瞬态搜索优化(TSO)算法,该算法受到开关电路瞬态行为的启发。文章详细阐述了TSO算法的工作原理、数学模型及其伪代码,并通过函数测试和数值分析验证了TSO算法的有效性和优越性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、理论基础

1、瞬态搜索优化算法

瞬态搜索优化(Transient search optimization, TSO)算法是一种新的基于物理的元启发式优化算法,该算法受开关电路瞬态行为的启发,开关电路包括电感和电容等存储元件。
在本节中,TSO算法建模为:
1)初始化搜索空间上下限之间的搜索代理;
2)搜索最佳解决方案(探索);
3)达到稳态或最佳解决方案(开发)。
首先,如式(1)所示,随机生成搜索代理的初始化。 Y = l b + r a n d × ( u b − l b ) (1) Y=lb+rand\times(ub-lb)\tag{1} Y=lb+rand×(ublb)(1)其中, l b lb lb是搜索空间的下界, u b ub ub是搜索空间的上界, r a n d rand rand ( 0 , 1 ) (0,1) (0,1)间均匀分布的随机向量。
其次,TSO算法开发和探索的数学模型如式(2)所示。 Y l + 1 = { Y l ∗ + ( Y l − C 1 ⋅ Y l ) e − T      r 1 < 0.5 Y l ∗ + e − T [ cos ⁡ ( 2 π T ) + sin ⁡ ( 2 π T ) ] ∣ Y l − C 1 ⋅ Y l ∗ ∣ r 1 ≥ 0.5 (2) Y_{l+1}=\begin{dcases}Y_l^*+(Y_l-C_1\cdot Y_l)e^{-T}\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, r_1<0.5\\Y_l^*+e^{-T}[\cos(2\pi T)+\sin(2\pi T)]|Y_l-C_1\cdot Y_l^*|\quad r_1\geq0.5\end{dcases}\tag{2} Yl+1={Yl+(YlC1Yl)eTr1<0.5Yl+eT[cos(2πT)+sin(2πT)]YlC1Ylr10.5(2) T = 2 × z × r 2 − z (3) T=2\times z\times r_2-z\tag{3} T=2×z×r2z(3) C 1 = k × z × r 3 + 1 (4) C_1=k\times z\times r_3+1\tag{4} C1=k×z×r3+1(4) z = 2 − 2 ( l L max ⁡ ) (5) z=2-2\left(l\over L_{\max}\right)\tag{5} z=22(Lmaxl)(5)其中, z z z是一个从2到0的衰减变量, T T T C 1 C_1 C1是随机系数, r 1 , r 2 , r 3 r_1,r_2,r_3 r1,r2,r3 [ 0 , 1 ] [0,1] [0,1]的随机数, Y l Y_l Yl是当前搜索代理的位置, Y l ∗ Y_l^* Yl是全局最优个体位置, l l l是当前迭代次数, k k k是一个常数( k = 0 , 1 , 2 , ⋯ k=0,1,2,\cdots k=0,1,2,), L max ⁡ L_{\max} Lmax是最大迭代次数。此外,探索和开发过程之间的平衡通过系数 T T T实现,系数 T T T [ − 2 , 2 ] [−2,2] [2,2]之间变化。 TSO算法的开发过程在 T > 0 T>0 T>0时完成,而探索过程在 T < 0 T<0 T<0时完成。

2、TSO算法伪代码

TSO算法的伪码如图1所示。显然,所提供的算法并不复杂,只使用一个方程来更新位置,并在探索和开发过程之间进行平衡。
在这里插入图片描述

图1 TSO算法伪代码

二、仿真实验与分析

1、函数测试与数值分析

将TSO与SSA、DE、GWO、CS和WOA进行对比,以文献[1]中的F3、F4(单峰函数/30维)、F11、F12(多峰函数/30维)、F18、F20(固定维度多峰函数/2维、6维)为例,种群规模设置为30,最大迭代次数设置为500,每个算法独立运算30次。结果显示如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

函数:F3
TSO:最差值: 1.6989e-40, 最优值: 7.031e-128, 平均值: 5.6703e-42, 标准差: 3.1016e-41, 秩和检验: 1
SSA:最差值: 4270.7964, 最优值: 471.3609, 平均值: 1868.2474, 标准差: 966.346, 秩和检验: 3.0199e-11
DE:最差值: 32399.3101, 最优值: 11850.0845, 平均值: 19873.0244, 标准差: 4926.5517, 秩和检验: 3.0199e-11
GWO:最差值: 0.0019457, 最优值: 5.0106e-09, 平均值: 6.9569e-05, 标准差: 0.00035448, 秩和检验: 3.0199e-11
CS:最差值: 3163.1127, 最优值: 1079.1188, 平均值: 2179.7134, 标准差: 578.7552, 秩和检验: 3.0199e-11
WOA:最差值: 68993.0173, 最优值: 10004.0005, 平均值: 39663.5254, 标准差: 15404.4347, 秩和检验: 3.0199e-11
函数:F4
TSO:最差值: 3.9849e-41, 最优值: 2.2873e-76, 平均值: 1.3283e-42, 标准差: 7.2755e-42, 秩和检验: 1
SSA:最差值: 19.5596, 最优值: 3.0564, 平均值: 10.6792, 标准差: 3.8958, 秩和检验: 3.0199e-11
DE:最差值: 21.0449, 最优值: 2.8168, 平均值: 8.9523, 标准差: 4.3934, 秩和检验: 3.0199e-11
GWO:最差值: 7.304e-06, 最优值: 3.4617e-08, 平均值: 1.1709e-06, 标准差: 1.7002e-06, 秩和检验: 3.0199e-11
CS:最差值: 15.5269, 最优值: 6.9186, 平均值: 10.525, 标准差: 2.3876, 秩和检验: 3.0199e-11
WOA:最差值: 87.5032, 最优值: 0.01732, 平均值: 48.4029, 标准差: 27.5881, 秩和检验: 3.0199e-11
函数:F11
TSO:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
SSA:最差值: 0.059638, 最优值: 0.00021308, 平均值: 0.018893, 标准差: 0.014805, 秩和检验: 1.2118e-12
DE:最差值: 0.0074155, 最优值: 2.4629e-07, 平均值: 0.00050054, 标准差: 0.0018793, 秩和检验: 1.2118e-12
GWO:最差值: 0.025795, 最优值: 0, 平均值: 0.0035243, 标准差: 0.0077095, 秩和检验: 0.011035
CS:最差值: 1.1417, 最优值: 1.032, 平均值: 1.0706, 标准差: 0.027996, 秩和检验: 1.2118e-12
WOA:最差值: 0, 最优值: 0, 平均值: 0, 标准差: 0, 秩和检验: NaN
函数:F12
TSO:最差值: 0.00043784, 最优值: 1.8904e-08, 平均值: 6.7585e-05, 标准差: 0.00010746, 秩和检验: 1
SSA:最差值: 17.1121, 最优值: 0.87951, 平均值: 7.0683, 标准差: 3.5374, 秩和检验: 3.0199e-11
DE:最差值: 0.15085, 最优值: 2.9892e-08, 平均值: 0.0056594, 标准差: 0.027626, 秩和检验: 0.00022539
GWO:最差值: 0.097754, 最优值: 0.0089264, 平均值: 0.050202, 标准差: 0.025139, 秩和检验: 3.0199e-11
CS:最差值: 5.543, 最优值: 0.91483, 平均值: 3.1942, 标准差: 1.0176, 秩和检验: 3.0199e-11
WOA:最差值: 0.16915, 最优值: 0.0033935, 平均值: 0.026915, 标准差: 0.029731, 秩和检验: 3.0199e-11
函数:F18
TSO:最差值: 32.687, 最优值: 3, 平均值: 4.8911, 标准差: 7.2043, 秩和检验: 1
SSA:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 2.7557e-13, 秩和检验: 3.0199e-11
DE:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 4.9479e-16, 秩和检验: 3.1602e-12
GWO:最差值: 3.0001, 最优值: 3, 平均值: 3, 标准差: 3.4395e-05, 秩和检验: 0.063533
CS:最差值: 3, 最优值: 3, 平均值: 3, 标准差: 1.6369e-15, 秩和检验: 2.5725e-11
WOA:最差值: 3.0006, 最优值: 3, 平均值: 3.0001, 标准差: 0.00012845, 秩和检验: 0.025101
函数:F20
TSO:最差值: -2.6046, 最优值: -3.2837, 平均值: -3.0699, 标准差: 0.1273, 秩和检验: 1
SSA:最差值: -3.1586, 最优值: -3.322, 平均值: -3.2269, 标准差: 0.059257, 秩和检验: 5.5329e-08
DE:最差值: -3.2031, 最优值: -3.322, 平均值: -3.2308, 标准差: 0.051146, 秩和检验: 6.8144e-09
GWO:最差值: -2.8404, 最优值: -3.322, 平均值: -3.2494, 标准差: 0.10671, 秩和检验: 5.0922e-08
CS:最差值: -3.322, 最优值: -3.322, 平均值: -3.322, 标准差: 1.1052e-06, 秩和检验: 3.0199e-11
WOA:最差值: -3.0818, 最优值: -3.3212, 平均值: -3.2162, 标准差: 0.09865, 秩和检验: 2.4913e-06

实验结果表明:TSO算法与其他优化算法相比,能够有效提升算法的收敛速度和寻优精度,以及具有更好的稳定性。

2、求解压缩弹簧设计优化问题

压缩弹簧优化设计问题具体请参考这里。仿真实验中,6种算法的运行次数、种群规模和最大迭代次数都保持一致,即 N = 30 , L max ⁡ = 500 N=30,L_{\max}=500 N=30,Lmax=500,每种算法分别独立运行30次。结果显示如下:
在这里插入图片描述

TSO:最差值: 0.016623, 最优值: 0.012714, 平均值: 0.013682, 标准差: 0.00079659, 秩和检验: 1
SSA:最差值: 0.026182, 最优值: 0.012683, 平均值: 0.013962, 标准差: 0.0025757, 秩和检验: 0.036439
DE:最差值: 2.78, 最优值: 0.020306, 平均值: 0.35342, 标准差: 0.63071, 秩和检验: 3.0199e-11
GWO:最差值: 0.013552, 最优值: 0.012676, 平均值: 0.012795, 标准差: 0.00018061, 秩和检验: 5.9673e-09
CS:最差值: 0.012675, 最优值: 0.012666, 平均值: 0.012668, 标准差: 2.0512e-06,秩和检验:3.0199e-11
WOA:最差值: 0.017776,最优值:0.012697,平均值:0.014115,标准差:0.0013988, 秩和检验: 0.4553

实验结果表明:TSO算法在求解压缩弹簧设计约束优化问题时具有很好的性能。

3、WSN三维覆盖优化

节点覆盖模型请参考这里。设监测区域为 50 m × 50 m × 50 m 50m\times50m\times50m 50m×50m×50m的三维空间,传感器节点个数 N = 30 N=30 N=30,其感知半径是 R s = 10 m R_s=10m Rs=10m,通信半径 R c = 20 m R_c=20m Rc=20m,迭代500次。初始部署、TSO优化覆盖、TSO算法覆盖率进化曲线如下图所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
初始部署和最终部署的节点位置及对应的覆盖率分别为:

初始位置:
7.006     44.2859     2.5367
16.6662     21.608     2.2573
5.0114     27.6175     5.1302
5.9041     27.4724     45.5392
21.5888     40.5542     48.2726
9.673     32.3202     6.1681
20.7338     23.7517     36.4837
48.8447     30.5909     22.9535
44.6453     5.7608     24.3537
33.6933     47.0303     16.1217
1.1549     9.2968     34.8589
16.4566     38.2497     15.7447
35.4464     29.4103     39.6782
21.261     0.1561     9.3935
34.1647     9.6075     41.0216
41.2692     37.7166     6.7542
23.7176     47.9804     35.7585
37.9087     38.7282     35.2308
2.2938     3.8691     29.1655
3.0118     45.3744     21.2036
43.9691     30.4769     42.1771
8.6733     24.511     47.8628
43.1201     29.5537     12.1197
6.2476     33.7217     30.6946
24.1915     6.3621     45.8918
2.3205     9.9397     21.5707
30.6656     32.5249     6.3104
23.6937     14.0488     2.002
38.2021     4.2468     3.5364
15.1711     23.1964     15.0327
初始覆盖率:0.59443
最优位置:
41.8646     6.7509     41.8647
28.4248     28.6055     41.8693
41.8682     25.2768     41.8671
41.8646     25.4888     6.0716
28.6043     9.3183     4.5926
41.8647     17.8143     41.8647
28.6322     28.4286     12.5721
4.2831     21.3633     28.2561
6.5553     41.8678     28.3248
15.9321     5.2648     28.7043
41.8647     41.8647     14.5814
28.5387     10.977     28.625
13.8583     21.7306     9.9097
28.34     41.8677     41.8648
15.4065     41.8657     8.9918
8.8142     11.4179     41.8646
28.3737     4.7507     13.4743
11.264     10.5742     14.1236
41.8645     41.8647     21.9302
41.8647     6.1608     28.3048
6.9413     20.5023     8.1644
41.8647     28.336     4.8144
7.489     23.4757     41.8649
41.8646     15.9171     20.1871
28.2556     41.8658     5.8808
41.8647     41.8648     28.5338
20.2291     17.5191     41.8647
28.4901     28.6996     28.2099
11.017     41.8649     41.8645
28.2336     28.5867     28.2474
最优覆盖率:0.67581

实验结果表明:TSO算法能够提升三维无线传感器网络中节点部署的覆盖率。

三、参考文献

[1] Qais, M.H., Hasanien, H.M., Alghuwainem, S. Transient search optimization: a new meta-heuristic optimization algorithm[J]. Applied Intelligence, 2020, 50: 3926-3941.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值