tf-pose-estimation实现单目相机实现实时展示人体三维骨架

本文档介绍了如何在Python虚拟环境中,通过tf-pose-estimation库实现实时人体姿态估计。涉及到的关键步骤包括:安装openpose相关模块,配置编译器swig,解决pycocotools的编译问题,处理tensorflow.contrib.tensorrt的导入错误,以及设置CUDA环境变量。最后,还涵盖了使用PyQt5和pyqtgraph进行结果展示的方法。
摘要由CSDN通过智能技术生成

首先在Github上下载下来所需要的安装包
Github仓库地址:
https://github.com/ildoonet/tf-pose-estimation
https://github.com/markjay4k/3D-Pose-Estimation

注意:所有安装的模块都是在python的虚拟环境中安装

一、openpose 安装部分

创建虚拟环境:conda create -n tf1 python=3.5
激活虚拟环境:conda activate tf1

以下安装模块部分速度较慢情况请更改pip或conda下载源

安装tensorflow:conda install tensorflow-gpu==1.4.0
安装opencv:pip install opencv-python==3.4.2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值