GAN | 代码简单实现生成对抗网络(GAN)(PyTorch)

本文介绍了GAN的基本原理,通过计算图和博弈论的概念,展示如何使用两个相互竞争的模型——生成器G和鉴别器D,来共同训练。G尝试生成与真实数据相似的假数据,而D则试图区分真实与伪造。提供的代码示例展示了如何用PyTorch实现一个简单的GAN模型,用于数据生成。在训练过程中,D先对真实和伪造数据进行判断,然后G根据D的反馈进行优化,逐步提升生成数据的质量。
摘要由CSDN通过智能技术生成

2014年GAN发表,直到最近大火的AI生成全部有GAN的踪迹,快来简单实现它!!!

GAN通过计算图和博弈论的创新组合,他们表明,如果有足够的建模能力,相互竞争的两个模型将能够通过普通的旧反向传播进行共同训练。

这些模型扮演着两种不同的(字面意思是对抗的)角色。给定一些真实的数据集R,G是生成器,试图创建看起来像真实数据的假数据,而D鉴别器,从真实集或G获取数据并标记差异。 G就像一造假机器,通过多次画画练习,使得画出来的话像真图一样。而D是试图区分的侦探团队。(除了在这种情况下,伪造者G永远看不到原始数据——只能看到D的判断。他们就像盲人摸象的探索伪造的人

Sourse

GAN实现代码

#!/usr/bin/env python

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable

matplotlib_is_available = True
try:
  from matplotlib import pyplot as plt
except ImportError:
  print("Will skip plotting; matplotlib is not available.")
  matplotlib_is_available = False

# Data params
data_mean = 4
data_stddev = 1.25

# ### Uncomment only one of these to define what data is actually sent to the Discriminator
#(name, preprocess, d_input_func) = ("Raw data", lambda data: data, lambda x: x)
#(name, preprocess, d_input_func) = ("Data and variances", lambda data: decorate_with_diffs(data, 2.0), lambda x: x * 2)
#(name, preprocess, d_input_func) = ("Data and diffs", lambda data: decorate_with_diffs(data, 1.0), lambda x: x * 2)
(name, preprocess, d_input_func) = ("Only 4 moments", lambda data: get_moments(data), lambda x: 4)

print("Using data [%s]" % (name))

# ##### DATA: Target data and generator input data

def get_distribution_sampler(mu, sigma):
    return lambda n: torch.Tensor(np.random.normal(mu, sigma, (1, n)))  # Gaussian

def get_generator_input_sampler():
    return lambda m, n: torch.rand(m, n)  # Uniform-dist data into generator, _NOT_ Gaussian

# ##### MODELS: Generator model and discriminator model

class Generator(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, f):
        super(Generator, self).__init__()
        self.map1 = nn.Linear(input_size, hidden_size)
        self.map2 = nn.Linear(hidden_size, hidden_size)
        self.map3 = nn.Linear(hidden_size, output_size)
        self.f = f

    def forward(self, x):
        x = self.map1(x)
        x = self.f(x)
        x = self.map2(x)
        x = self.f(x)
        x = self.map3(x)
        return x

class Discriminator(nn.Module):
    def __init__(self, input_size, hidden_size, output_size, f):
        super(Discriminator, self).__init__()
        self.map1 = nn.Linear(input_size, hidden_size)
        self.map2 = nn.Linear(hidden_size, hidden_size)
        self.map3 = nn.Linear(hidden_size, output_size)
        self.f = f

    def forward(self, x):
        x = self.f(self.map1(x))
        x = self.f(self.map2(x))
        return self.f(self.map3(x))

def extract(v):
    return v.data.storage().tolist()

def stats(d):
    return [np.mean(d), np.std(d)]

def get_moments(d):
    # Return the first 4 moments of the data provided
    mean = torch.mean(d)
    diffs = d - mean
    var = torch.mean(torch.pow(diffs, 2.0))
    std = torch.pow(var, 0.5)
    zscores = diffs / std
    skews = torch.mean(torch.pow(zscores, 3.0))
    kurtoses = torch.mean(torch.pow(zscores, 4.0)) - 3.0  # excess kurtosis, should be 0 for Gaussian
    final = torch.cat((mean.reshape(1,), std.reshape(1,), skews.reshape(1,), kurtoses.reshape(1,)))
    return final

def decorate_with_diffs(data, exponent, remove_raw_data=False):
    mean = torch.mean(data.data, 1, keepdim=True)
    mean_broadcast = torch.mul(torch.ones(data.size()), mean.tolist()[0][0])
    diffs = torch.pow(data - Variable(mean_broadcast), exponent)
    if remove_raw_data:
        return torch.cat([diffs], 1)
    else:
        return torch.cat([data, diffs], 1)

def train():
    # Model parameters
    g_input_size = 1      # Random noise dimension coming into generator, per output vector
    g_hidden_size = 5     # Generator complexity
    g_output_size = 1     # Size of generated output vector
    d_input_size = 500    # Minibatch size - cardinality of distributions
    d_hidden_size = 10    # Discriminator complexity
    d_output_size = 1     # Single dimension for 'real' vs. 'fake' classification
    minibatch_size = d_input_size

    d_learning_rate = 1e-3
    g_learning_rate = 1e-3
    sgd_momentum = 0.9

    num_epochs = 5000
    print_interval = 100
    d_steps = 20
    g_steps = 20

    dfe, dre, ge = 0, 0, 0
    d_real_data, d_fake_data, g_fake_data = None, None, None

    discriminator_activation_function = torch.sigmoid
    generator_activation_function = torch.tanh

    d_sampler = get_distribution_sampler(data_mean, data_stddev)
    gi_sampler = get_generator_input_sampler()
    G = Generator(input_size=g_input_size,
                  hidden_size=g_hidden_size,
                  output_size=g_output_size,
                  f=generator_activation_function)
    D = Discriminator(input_size=d_input_func(d_input_size),
                      hidden_size=d_hidden_size,
                      output_size=d_output_size,
                      f=discriminator_activation_function)
    criterion = nn.BCELoss()  # Binary cross entropy: http://pytorch.org/docs/nn.html#bceloss
    d_optimizer = optim.SGD(D.parameters(), lr=d_learning_rate, momentum=sgd_momentum)
    g_optimizer = optim.SGD(G.parameters(), lr=g_learning_rate, momentum=sgd_momentum)

    for epoch in range(num_epochs):
        for d_index in range(d_steps):
            # 1. Train D on real+fake
            D.zero_grad()

            #  1A: Train D on real
            d_real_data = Variable(d_sampler(d_input_size))
            d_real_decision = D(preprocess(d_real_data))
            d_real_error = criterion(d_real_decision, Variable(torch.ones([1])))  # ones = true
            d_real_error.backward() # compute/store gradients, but don't change params

            #  1B: Train D on fake
            d_gen_input = Variable(gi_sampler(minibatch_size, g_input_size))
            d_fake_data = G(d_gen_input).detach()  # detach to avoid training G on these labels
            d_fake_decision = D(preprocess(d_fake_data.t()))
            d_fake_error = criterion(d_fake_decision, Variable(torch.zeros([1])))  # zeros = fake
            d_fake_error.backward()
            d_optimizer.step()     # Only optimizes D's parameters; changes based on stored gradients from backward()

            dre, dfe = extract(d_real_error)[0], extract(d_fake_error)[0]

        for g_index in range(g_steps):
            # 2. Train G on D's response (but DO NOT train D on these labels)
            G.zero_grad()

            gen_input = Variable(gi_sampler(minibatch_size, g_input_size))
            g_fake_data = G(gen_input)
            dg_fake_decision = D(preprocess(g_fake_data.t()))
            g_error = criterion(dg_fake_decision, Variable(torch.ones([1])))  # Train G to pretend it's genuine

            g_error.backward()
            g_optimizer.step()  # Only optimizes G's parameters
            ge = extract(g_error)[0]

        if epoch % print_interval == 0:
            print("Epoch %s: D (%s real_err, %s fake_err) G (%s err); Real Dist (%s),  Fake Dist (%s) " %
                  (epoch, dre, dfe, ge, stats(extract(d_real_data)), stats(extract(d_fake_data))))

    if matplotlib_is_available:
        print("Plotting the generated distribution...")
        values = extract(g_fake_data)
        print(" Values: %s" % (str(values)))
        plt.hist(values, bins=50)
        plt.xlabel('Value')
        plt.ylabel('Count')
        plt.title('Histogram of Generated Distribution')
        plt.grid(True)
        plt.show()


train()

代码输出结果

个人总结

GAN从编程的角度来看(纯个人理解,不对可指正)

  • 利用numpy的random方法,随机生成多维的噪音向量

  • 创建一个G网络用来生成

  • 创建一个D网络用来判断

  • 俩个网络在训练时分别进行优化

  • 先训练D网络去判断真假:如果训练D为真时,进行传播;如果训练D为假时,进行传播,投入优化器(1为真,0为假)

  • 在D的基础上训练G。

*因为是随机生成,所以每次生成结果不同

好的,下面是pytorch实现GAN的步骤: 1.导入必要的库 ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as dset import torchvision.transforms as transforms from torch.utils.data import DataLoader import os import numpy as np import torchvision.utils as vutils ``` 2.定义生成器和鉴别器 ```python class Generator(nn.Module): def __init__(self, ngf, nz, nc): super(Generator, self).__init__() self.main = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf * 8), nn.ReLU(True), nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh() ) def forward(self, input): return self.main(input) class Discriminator(nn.Module): def __init__(self, ndf, nc): super(Discriminator, self).__init__() self.main = nn.Sequential( nn.Conv2d(nc, ndf, 4, 2, 1, bias=False), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 2), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 4), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False), nn.BatchNorm2d(ndf * 8), nn.LeakyReLU(0.2, inplace=True), nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False), nn.Sigmoid() ) def forward(self, input): return self.main(input).view(-1, 1).squeeze(1) ``` 3.定义超参数 ```python # 超参数 batch_size = 64 image_size = 64 nz = 100 ngf = 64 ndf = 64 num_epochs = 50 lr = 0.0002 beta1 = 0.5 ngpu = 1 ``` 4.准备数据集 ```python # 图像处理 transform = transforms.Compose([ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 数据集 dataset = dset.ImageFolder(root='./data', transform=transform) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2) ``` 5.定义优化器和损失函数 ```python # 设备 device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu") # 初始化生成器和鉴别器 netG = Generator(ngf, nz, 3).to(device) netD = Discriminator(ndf, 3).to(device) # 初始化权重 netG.apply(weights_init) netD.apply(weights_init) # 定义损失函数和优化器 criterion = nn.BCELoss() optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999)) ``` 6.训练模型 ```python # 真实标签 real_label = 1. # 假标签 fake_label = 0. # 训练 for epoch in range(num_epochs): for i, data in enumerate(dataloader, 0): # 判别器的训练 netD.zero_grad() real_cpu = data[0].to(device) b_size = real_cpu.size(0) label = torch.full((b_size,), real_label, device=device) output = netD(real_cpu) errD_real = criterion(output, label) errD_real.backward() D_x = output.mean().item() noise = torch.randn(b_size, nz, 1, 1, device=device) fake = netG(noise) label.fill_(fake_label) output = netD(fake.detach()) errD_fake = criterion(output, label) errD_fake.backward() D_G_z1 = output.mean().item() errD = errD_real + errD_fake optimizerD.step() # 生成器的训练 netG.zero_grad() label.fill_(real_label) output = netD(fake) errG = criterion(output, label) errG.backward() D_G_z2 = output.mean().item() optimizerG.step() # 输出训练状态 if i % 50 == 0: print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f' % (epoch, num_epochs, i, len(dataloader), errD.item(), errG.item(), D_x, D_G_z1, D_G_z2)) # 保存生成器的输出 if (epoch == 0) and (i == 0): vutils.save_image(real_cpu, '%s/real_samples.png' % "./results", normalize=True) if i % 100 == 0: with torch.no_grad(): fake = netG(fixed_noise).detach().cpu() vutils.save_image(fake, '%s/fake_samples_epoch_%03d.png' % ("./results", epoch), normalize=True) ``` 以上就是pytorch实现GAN的步骤,其中还包括了权重的初始化、训练状态的输出、保存生成器的输出等。这里只是一个简单的示例,实际使用时还需要根据具体问题进行相应的调整和优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值