GAN损失函数公式详细推导(含完整代码)

本文介绍了GAN的基本概念,包括由生成器和判别器组成的模型,以及它们通过对抗性训练提升性能的过程。文章详细阐述了GAN的训练过程和损失函数,同时提供了使用PyTorch实现GAN和DCGAN生成MNIST手写数字数据集的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:投稿 作者:孙裕道
编辑:学姐

GAN原理介绍

GAN是由生成器G和判别器D组成,通过大量样本数据训练使得生成器的生成能力和判别器的判别能力在对抗中逐步提高,最终目的是让生成器G输入到生成器中生成假的样本。

具体的训练过程为:

• 首先在真实数据集中采样出一批真实样本

• 同时从某个分布中随机生成一些噪声向量

• 接着将噪声向量输入到生成器中生成假的样本数据

• 最后把真实样本与等量的假的样本输入到判别器中进行判别

「GAN训练的过程可以描述为求解一个二元函数极小极大值的过程,具体的公式如下所示:」

优化对抗损失V(D,G)可以同时达到两个目的,第一个目的是让生成器G能够生成真实的样本,第二个目的是让判别器D能更好地区分开真实样本和生成样本。

「生成器G损失函数」

训练生成器的损失函数其实是对抗损失V(D,G)中关于噪声z的项,其损失函数为:

生成器的目标是希望生成器生成的样本越像真的越好,具体体现在数学公式中为:

其中BCE(.,.)表示二元交叉熵函数。则由上可知,GAN中生成器最小化损失函数LG可以写成最小化二元交叉熵函数的形式。

「判别器D损失函数」

训练生成器的损失函数其实是对抗损失V(D,G)中关于样本x的项,其损失函数为:

判别器的目标是希望判别器能够更好的区分出生成样本和真实样本,具体体现在数学公式中为:

GAN代码介绍

本节介绍用GAN和DCGAN生成mnist手写数据集,GAN和DCGAN的网络结构以及完整的实现代码分别如下所示:

import argparse
from torchvision import datasets, transforms
import torch
import torch.nn as nn
import os
import numpy as np
from torchvision.utils import save_image

def args_parse():
    parser = argparse.ArgumentParser()
    parser.add_argument("--n_epoches", type=int, default=100, help="number of epochs of training")
    parser.add_argument("--batch_size", type=int, default=256, help="size of the batches")
    parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
    parser.add_argument("--n_cpu", type=int, default=1, help="number of cpu threads to use during batch generation")
    parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
    parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
    parser.add_argument("--channels", type=int, default=1, help="number of image channels")
    parser.add_argument("--sample_interval", type=int, default=100, help="interval between image sampling")
    parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
    parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
    parser.add_argument("--type", type=str, default='GAN', help="The type of GAN")
    return parser.parse_args()

class Generator(nn.Module):
    def __init__(self,  latent_dim, img_shape):
        super(Generator, self).__init__()
        self.img_shape = img_shape

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
                *block(latent_dim, 128, normalize=False),
                *block(128, 256),
                *block(256, 512),
                *block(512, 1024),
                nn.Linear(1024, int(np.prod(img_shape))),
                nn.Tanh()
        )


    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), self.img_shape[0], self.img_shape[1], self.img_shape[2])
        return img

class Discriminator(nn.Module):
    def __init__(self, img_shape):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)
        return validity


class Generator_CNN(nn.Module):
    def __init__(self,  latent_dim, img_shape):
        super(Generator_CNN, self).__init__()

        self.init_size = img_shape[1] // 4
        self.l1 = nn.Sequential(nn.Linear(latent_dim, 128 * self.init_size ** 2))   # 100 ——> 128 * 8 * 8 = 8192

        self.conv_blocks = nn.Sequential(
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor = 2),
            nn.Conv2d(128, 128, 3, stride=1, padding=1),
            nn.BatchNorm2d(128, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Upsample(scale_factor = 2),
            nn.Conv2d(128, 64, 3, stride=1, padding=1),
            nn.BatchNorm2d(64, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, img_shape[0], 3, stride=1, padding=1),
            nn.Tanh()
        )

    def forward(self, z):
        out = self.l1(z)
        out = out.view(out.shape[0], 128, self.init_size, self.init_size)
        img = self.conv_blocks(out)
        return img

class Discriminator_CNN(nn.Module):
    def __init__(self, img_shape):
        super(Discriminator_CNN, self).__init__()

        def discriminator_block(in_filters, out_filters, bn=True):
            block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1),
                     nn.LeakyReLU(0.2,inplace=True),
                     nn.Dropout2d(0.25)]
            if bn:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            return block

        self.model = nn.Sequential(
            *discriminator_block(img_shape[0], 16, bn=False),
            *discriminator_block(16, 32),
            *discriminator_block(32, 64),
            *discriminator_block(64, 128),

        )

        ds_size = img_shape[1] // 2 ** 4
        self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) # 128 * 2 * 2 ——> 1

    def forward(self, img):
        out = self.model(img)
        out = out.view(out.shape[0], -1)
        validity = self.adv_layer(out)
        return validity

def train():
    opt = args_parse()

    transform = transforms.Compose(
                [
                    transforms.Resize(opt.img_size),
                    transforms.ToTensor(),
                    transforms.Normalize([0.5],[0.5])   
                ])

    mnist_data = datasets.MNIST(
                    "mnist-data",
                    train=True,
                    download=True,
                    transform = transform
                )

    train_loader = torch.utils.data.DataLoader(
                    mnist_data,
                    batch_size=opt.batch_size,
                    shuffle=True)


    img_shape = (opt.channels, opt.img_size, opt.img_size)
    # Construct generator and discriminator
    if opt.type == 'DCGAN':
        generator = Generator_CNN(opt.latent_dim, img_shape)
        discriminator = Discriminator_CNN(img_shape)
    else:
        generator = Generator(opt.latent_dim, img_shape)
        discriminator = Discriminator(img_shape)

    adversarial_loss = torch.nn.BCELoss()

    cuda = True if torch.cuda.is_available() else False
    if cuda:
        generator.cuda()
        discriminator.cuda()
        adversarial_loss.cuda()

    # Loss function


    # Optimizers
    optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
    optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

    print(generator)
    print(discriminator)

    Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
    for epoch in range(opt.n_epoches):
        for i, (imgs, _) in enumerate(train_loader):
            # adversarial ground truths
            valid = torch.ones(imgs.shape[0], 1).type(Tensor)
            fake = torch.zeros(imgs.shape[0], 1).type(Tensor)

            real_imgs = imgs.type(Tensor)

            #############    Train Generator    ################
            optimizer_G.zero_grad()

            # sample noise as generator input
            z = torch.tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))).type(Tensor)

            # Generate a batch of images
            gen_imgs = generator(z)

            # G-Loss
            g_loss = adversarial_loss(discriminator(gen_imgs), valid)
            g_loss.backward()
            optimizer_G.step()

            #############  Train Discriminator ################
            optimizer_D.zero_grad()

            # D-Loss
            real_loss = adversarial_loss(discriminator(real_imgs), valid)
            fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
            d_loss = (real_loss + fake_loss) / 2

            d_loss.backward()
            optimizer_D.step()

            print(
                "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G Loss: %f]"
                % (epoch, opt.n_epoches, i , len(train_loader), d_loss.item(), g_loss.item())
            )

            batches_done = epoch * len(train_loader) + i
            os.makedirs("images", exist_ok=True)
            if batches_done % opt.sample_interval == 0:
                save_image(gen_imgs.data[:25], "images/%d.png" % (batches_done), nrow=5, normalize=True )

if __name__ == '__main__':
    train()

关注下方《学姐带你玩AI》🚀🚀🚀

回复“GAN”领取论文PDF&课件&代码数据集

码字不易,欢迎大家点赞评论收藏!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值