GAN损失函数公式详细推导(含完整代码)

本文介绍了GAN的基本概念,包括由生成器和判别器组成的模型,以及它们通过对抗性训练提升性能的过程。文章详细阐述了GAN的训练过程和损失函数,同时提供了使用PyTorch实现GAN和DCGAN生成MNIST手写数字数据集的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:投稿 作者:孙裕道
编辑:学姐

GAN原理介绍

GAN是由生成器G和判别器D组成,通过大量样本数据训练使得生成器的生成能力和判别器的判别能力在对抗中逐步提高,最终目的是让生成器G输入到生成器中生成假的样本。

具体的训练过程为:

• 首先在真实数据集中采样出一批真实样本

• 同时从某个分布中随机生成一些噪声向量

• 接着将噪声向量输入到生成器中生成假的样本数据

• 最后把真实样本与等量的假的样本输入到判别器中进行判别

「GAN训练的过程可以描述为求解一个二元函数极小极大值的过程,具体的公式如下所示:」

优化对抗损失V(D,G)可以同时达到两个目的,第一个目的是让生成器G能够生成真实的样本,第二个目的是让判别器D能更好地区分开真实样本和生成样本。

「生成器G损失函数」

训练生成器的损失函数其实是对抗损失V(D,G)中关于噪声z的项,其损失函数为:

生成器的目标是希望生成器生成的样本越像真的越好,具体体现在数学公式中为:

其中BCE(.,.)表示二元交叉熵函数。则由上可知,GAN中生成器最小化损失函数LG可以写成最小化二元交叉熵函数的形式。

「判别器D损失函数」

训练生成器的损失函数其实是对抗损失V(D,G)中关于样本x的项,其损失函数为:

判别器的目标是希望判别器能够更好的区分出生成样本和真实样本,具体体现在数学公式中为:

GAN代码介绍

本节介绍用GAN和DCGAN生成mnist手写数据集,GAN和DCGAN的网络结构以及完整的实现代码分别如下所示:

import argparse
from torchvision import datasets, transforms
import torch
import torch.nn as nn
import os
import numpy as np
from torchvision.utils import save_image

def args_parse():
    parser = argparse.ArgumentParser()
    parser.add_argument("--n_epoches", type=int, default=100, help="number of epochs of training")
    parser.add_argument("--batch_size", type=int, default=256, help="size of the batches")
    parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
    parser.add_argument("--n_cpu", type=int, default=1, help="number of cpu threads to use during batch generation")
    parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
    parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
    parser.add_argument("--channels", type=int, default=1, help="number of image channels")
    parser.add_argument("--sample_interval", type=int, default=100, help="interval between image sampling")
    parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
    parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
    parser.add_argument("--type", type=str, default='GAN', help="The type of GAN")
    return parser.parse_args()

class Generator(nn.Module):
    def __init__(self,  latent_dim, img_shape):
        super(Generator, self).__init__()
        self.img_shape = img_shape

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
                *block(latent_dim, 128, normalize=False),
                *block(128, 256),
                *block(256, 512),
                *block(512, 1024),
                nn.Linear(1024, int(np.prod(img_shape))),
                nn.Tanh()
        )


    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), self.img_shape[0], self.img_shape[1], self.img_shape[2])
        return img

class Discriminator(nn.Module):
    def __init__(self, img_shape):
        super(Discriminator, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)
        return validity


class Generator_CNN(nn.Module):
    def __init__(self,  latent_dim, img_shape):
        super(Generator_CNN, self).__init__()

        self.init_size = img_shape[1] // 4
        self.l1 = nn.Sequential(nn.Linear(latent_dim, 128 * self.init_size ** 2))   # 100 ——> 128 * 8 * 8 = 8192

        self.conv_blocks = nn.Sequential(
            nn.BatchNorm2d(128),
            nn.Upsample(scale_factor = 2),
            nn.Conv2d(128, 128, 3, stride=1, padding=1),
            nn.BatchNorm2d(128, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Upsample(scale_factor = 2),
            nn.Conv2d(128, 64, 3, stride=1, padding=1),
            nn.BatchNorm2d(64, 0.8),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Conv2d(64, img_shape[0], 3, stride=1, padding=1),
            nn.Tanh()
        )

    def forward(self, z):
        out = self.l1(z)
        out = out.view(out.shape[0], 128, self.init_size, self.init_size)
        img = self.conv_blocks(out)
        return img

class Discriminator_CNN(nn.Module):
    def __init__(self, img_shape):
        super(Discriminator_CNN, self).__init__()

        def discriminator_block(in_filters, out_filters, bn=True):
            block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1),
                     nn.LeakyReLU(0.2,inplace=True),
                     nn.Dropout2d(0.25)]
            if bn:
                block.append(nn.BatchNorm2d(out_filters, 0.8))
            return block

        self.model = nn.Sequential(
            *discriminator_block(img_shape[0], 16, bn=False),
            *discriminator_block(16, 32),
            *discriminator_block(32, 64),
            *discriminator_block(64, 128),

        )

        ds_size = img_shape[1] // 2 ** 4
        self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) # 128 * 2 * 2 ——> 1

    def forward(self, img):
        out = self.model(img)
        out = out.view(out.shape[0], -1)
        validity = self.adv_layer(out)
        return validity

def train():
    opt = args_parse()

    transform = transforms.Compose(
                [
                    transforms.Resize(opt.img_size),
                    transforms.ToTensor(),
                    transforms.Normalize([0.5],[0.5])   
                ])

    mnist_data = datasets.MNIST(
                    "mnist-data",
                    train=True,
                    download=True,
                    transform = transform
                )

    train_loader = torch.utils.data.DataLoader(
                    mnist_data,
                    batch_size=opt.batch_size,
                    shuffle=True)


    img_shape = (opt.channels, opt.img_size, opt.img_size)
    # Construct generator and discriminator
    if opt.type == 'DCGAN':
        generator = Generator_CNN(opt.latent_dim, img_shape)
        discriminator = Discriminator_CNN(img_shape)
    else:
        generator = Generator(opt.latent_dim, img_shape)
        discriminator = Discriminator(img_shape)

    adversarial_loss = torch.nn.BCELoss()

    cuda = True if torch.cuda.is_available() else False
    if cuda:
        generator.cuda()
        discriminator.cuda()
        adversarial_loss.cuda()

    # Loss function


    # Optimizers
    optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
    optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))

    print(generator)
    print(discriminator)

    Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
    for epoch in range(opt.n_epoches):
        for i, (imgs, _) in enumerate(train_loader):
            # adversarial ground truths
            valid = torch.ones(imgs.shape[0], 1).type(Tensor)
            fake = torch.zeros(imgs.shape[0], 1).type(Tensor)

            real_imgs = imgs.type(Tensor)

            #############    Train Generator    ################
            optimizer_G.zero_grad()

            # sample noise as generator input
            z = torch.tensor(np.random.normal(0, 1, (imgs.shape[0], opt.latent_dim))).type(Tensor)

            # Generate a batch of images
            gen_imgs = generator(z)

            # G-Loss
            g_loss = adversarial_loss(discriminator(gen_imgs), valid)
            g_loss.backward()
            optimizer_G.step()

            #############  Train Discriminator ################
            optimizer_D.zero_grad()

            # D-Loss
            real_loss = adversarial_loss(discriminator(real_imgs), valid)
            fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake)
            d_loss = (real_loss + fake_loss) / 2

            d_loss.backward()
            optimizer_D.step()

            print(
                "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G Loss: %f]"
                % (epoch, opt.n_epoches, i , len(train_loader), d_loss.item(), g_loss.item())
            )

            batches_done = epoch * len(train_loader) + i
            os.makedirs("images", exist_ok=True)
            if batches_done % opt.sample_interval == 0:
                save_image(gen_imgs.data[:25], "images/%d.png" % (batches_done), nrow=5, normalize=True )

if __name__ == '__main__':
    train()

关注下方《学姐带你玩AI》🚀🚀🚀

回复“GAN”领取论文PDF&课件&代码数据集

码字不易,欢迎大家点赞评论收藏!

<think>好的,我现在需要帮助用户解决关于平衡小车PID参数调节的方法和技巧的问题。用户已经提供了一些参考资料,我需要先仔细理解这些内容,再结合自己的知识来组织回答。 首先,用户提到的引用[1]是关于PID调参的图文详解,其中以小车调速系统为例,分析了三个参数的作用。引用[2]则具体展示了平衡小车的直立环和速度环的代码实现,包括PD控制和PI控制。这说明用户需要的是结合理论和实践的调参步骤,可能涉及直立环、速度环和转向环的参数调整。 接下来,我需要回忆PID控制的基本原理。PID由比例、积分、微分三个部分组成,每个部分对应不同的作用。比例项(P)响应当前误差,积分项(I)消除累积误差,微分项(D)抑制变化率。在平衡小车中,直立环通常使用PD控制,因为需要快速响应角度变化,而速度环可能需要PI控制来维持速度稳定。 用户的问题是关于方法和技巧,所以需要分步骤说明。比如,先调直立环,再调速度环,最后转向环。每个环节要说明参数的作用,调节顺序(如先P后D),以及如何观察现象进行调整。例如直立环的P过小会导致响应慢,无法平衡,过大则振荡;D参数则影响阻尼效果,防止抖动。 同时,要注意引用用户提供的资料。比如在直立环部分,引用[2]中的代码显示使用了Kp和Kd,这可以支持PD控制的说法。速度环部分,用户提到kp和ki,对应PI控制,需要解释积分项的作用,如消除稳态误差,但可能引起积分饱和,需要限幅。 此外,用户可能需要知道调参时的技巧,比如分步调试、参数范围的经验值、安全措施(防止电机过载)、工具使用(如蓝牙模块监控数据)等。这些内容需要条理清晰,用简洁的语言描述,避免过于技术化,让用户容易理解和操作。 最后,生成的相关问题需要与PID调节相关,可能涉及参数整定方法、常见问题处理、对比不同控制策略等。这有助于用户进一步探索。 总结回答结构: 1. 调参步骤:分直立环、速度环、转向环,按顺序调整。 2. 每个环节的参数作用和调整方法,结合引用内容。 3. 调参技巧:安全措施、工具使用、经验值参考。 4. 常见问题及解决方法,如振荡、响应慢等。 5. 生成相关问题,引导深入学习。 需要确保回答符合用户要求的中文,使用正确的LaTeX格式,行内公式用$...$,独立公式用$$...$$。例如,在解释PID公式时,使用$K_p$、$K_i$、$K_d$,并可能展示直立环的PD控制公式:$$u = K_p \cdot e + K_d \cdot \frac{de}{dt}$$。 检查是否有遗漏点,比如是否需要提到串级PID结构,或者平衡小车的动力学模型,但根据用户提供的引用,可能不需要太深入理论,而是侧重实践方法。因此,保持回答实用,步骤明确,技巧具体,即可满足用户需求。</think>### 平衡小车PID参数调节方法与技巧 平衡小车的PID参数调节是保证其稳定运行的核心步骤,需分步骤调试直立环、速度环和转向环。以下是具体方法与技巧: --- #### **1. 直立环(PD控制)** 直立环通过比例(P)和微分(D)项快速响应角度变化,保持车身直立。 **公式**: $$u_{\text{平衡}} = K_p \cdot (θ_{\text{实际}} - θ_{\text{目标}}) + K_d \cdot \frac{dθ}{dt}$$ **调参步骤**: - **先调$K_p$**: - **现象**:若$K_p$过小,小车无法抵抗倾斜,缓慢倒下;若$K_p$过大,车身剧烈振荡[^2]。 - **方法**:从较小值逐步增大,直到小车能快速响应倾斜但未振荡。 - **再调$K_d$**: - **现象**:若$K_d$过小,车身抖动;若$K_d$过大,响应迟钝,可能出现“僵硬”现象[^2]。 - **方法**:在$K_p$稳定的基础上增加$K_d$,抑制高频抖动。 **示例代码**(引用[2]直立环实现): ```c int Vertical_Ring_PD(float Angle, float Gyro) { float Bias = Angle - Mechanical_balance; // 偏差计算 return PID.Balance_Kp * Bias + Gyro * PID.Balance_Kd; // PD控制输出 } ``` --- #### **2. 速度环(PI控制)** 速度环通过比例(P)和积分(I)项维持小车速度稳定。 **公式**: $$u_{\text{速度}} = K_p \cdot (v_{\text{目标}} - v_{\text{实际}}) + K_i \cdot \int (v_{\text{目标}} - v_{\text{实际}}) dt$$ **调参步骤**: - **先调$K_p$**: - **现象**:$K_p$过小时,小车加速/减速缓慢;$K_p$过大时,速度波动明显。 - **方法**:逐步增大$K_p$,使小车能快速跟踪目标速度。 - **再调$K_i$**: - **现象**:$K_i$过小,稳态误差无法消除;$K_i$过大,积分饱和导致超调。 - **方法**:在$K_p$基础上加入$K_i$,消除静差,但需对积分项限幅[^2]。 --- #### **3. 转向环(可选,P控制)** 转向环通过比例项调整左右轮差速,实现转向控制: $$u_{\text{转向}} = K_p \cdot (θ_{\text{目标转向}} - θ_{\text{实际}})$$ **调参**:根据转向灵敏度调整$K_p$,避免转向过冲或迟钝。 --- #### **调参技巧** 1. **分步调试**:先调直立环,再调速度环,最后处理转向环。 2. **安全措施**:调试时固定小车或限制电机功率,防止失控。 3. **工具辅助**:通过蓝牙模块或上位机实时监控角度、速度等数据。 4. **经验参考**: - 直立环$K_p$范围:20~100,$K_d$范围:1~5。 - 速度环$K_p$范围:0.1~2,$K_i$范围:0.01~0.1。 --- #### **常见问题与解决** - **小车振荡**:增大$K_d$或减小$K_p$。 - **响应迟钝**:增大$K_p$或减小$K_d$。 - **静差累积**:检查速度环$K_i$是否过小或未积分限幅[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值