tensorflow的pb模型转为onnx模型

本文介绍如何使用Tf2onnx工具将TensorFlow模型转换为ONNX模型,包括安装配置、模型转换命令及参数说明,并提供了解决常见问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        tensorflow模型转为onnx模型的工具:Tf2onnx

        git源码:https://github.com/onnx/tensorflow-onnx

1、python和tensorflow版本要求

         Python版本:3.6

        Tensorflow版本:1.13

2、Tf2onnx安装

pip install -U tf2onnx

3、模型转换

python -m tf2onnx.convert --graphdef saved_model.pb --output model.onnx --inputs input/audio/preprocessed:0 --outputs output/softmax:0

参数说明:

-graphdef:需要进行转换的pb模型

--output:转换后的onnx模型名称

-inputs:pb模型输入层的名字

--outputs:pb模型输出层的名字

(模型输入名称见4)

4、summarize graph tool

        查看pb模型输入输出的工具

1)安装

        下载tensorflow源码:Git:https://github.com/tensorflow

        安装bazel:下载:bazel-4.0.0-installer-linux-x86_64.sh

                            地址:Index of bazel-local/4.0.0

                            执行命令:chmod +x bazel-<version>-installer-linux-x86_64.sh

                                              ./bazel-<version>-installer-linux-x86_64.sh

2)使用

在下载的tensorflow源码中分别执行:

bazel build tensorflow/tools/graph_transforms:summarize_graph

bazel-bin/tensorflow/tools/graph_transforms/summarize_graph 
--in_graph=tensorflow_inception_graph.pb

输出的即为模型的输入输出层模型名称

eg:

 

5.可能出现的问题

 解决:不使用带输入输出层名称的参数

             将模型当道tmp_model文件夹中,然后执行:

python -m tf2onnx.convert --saved-model tmp_model --output simbert.onnx --opset 13

6.直接从ckpt模型转换为onnx模型

        但是需要知道输入和输出层名字,多个输入用逗号隔开

python -m tf2onnx.convert --checkpoint ckpt/model.ckpt.meta --inputs input1:0,input2:0,input3:0 --outputs output:0 --output model.onnx --opset 13

<think>好的,用户想将ONNX模型换为TensorFlowPB格式,我需要详细回答方法和工具。首先,我得回忆一下之前看到的引用内容。引用1、3提到了使用onnx-tf库的prepare和export_graph方法,用户可能需要安装这个库。另外,引用2是关于TensorFlowONNX,可能不太相关,但要注意别混淆。 用户可能对Python环境配置不太熟悉,所以应该给出安装步骤,比如安装onnxonnx-tf。然后分步骤说明如何加载ONNX模型,准备TensorFlow表示,最后导出为PB文件。代码示例很重要,用户可以直接复制使用。还要注意路径问题,提醒用户替换自己的模型路径。 另外,常见问题比如环境冲突,可能需要提醒用户版本兼容性。换后的验证步骤也很重要,比如加载PB模型并进行推理测试。有没有其他工具?比如命令行工具,但引用里提到的可能需要补充。 需要确保步骤清晰,避免技术术语过多,让用户容易跟随。最后生成相关问题,覆盖换失败、验证方法和其他换工具等,这样用户能进一步解决问题。</think>### 分步说明:ONNX模型TensorFlow PB格式 #### 方法一:使用`onnx-tf`库(推荐) 1. **安装依赖库** 需安装`onnx`和`onnx-tensorflow`(即`onnx-tf`): ```bash pip install onnx onnx-tf tensorflow ``` 注意:TensorFlow版本需与`onnx-tf`兼容(推荐TensorFlow≥2.4)[^1][^3]。 2. **编写换代码** 创建Python脚本(如`convert_onnx_to_pb.py`),内容如下: ```python import onnx from onnx_tf.backend import prepare import os def onnx_to_pb(onnx_path, pb_path): # 加载ONNX模型 onnx_model = onnx.load(onnx_path) # 换为TensorFlow表示 tf_rep = prepare(onnx_model) # 导出为PB格式 tf_rep.export_graph(pb_path) if __name__ == "__main__": onnx_path = "your_model.onnx" # 替换为实际路径 pb_path = "output_model.pb" # 输出路径 os.makedirs(os.path.dirname(pb_path), exist_ok=True) onnx_to_pb(onnx_path, pb_path) ``` 3. **执行换** 运行脚本: ```bash python convert_onnx_to_pb.py ``` #### 方法二:命令行工具(需配置环境) 若已安装`tf2onnx`工具包,可通过以下命令快速换: ```bash python -m tf2onnx.convert --saved-model <ONNX模型路径> --output <PB输出路径> --opset 13 ``` 需注意`--opset`参数需与原始ONNX模型版本匹配[^2]。 #### 验证换结果 换完成后,可通过TensorFlow加载PB模型验证: ```python import tensorflow as tf # 加载PB模型 model = tf.saved_model.load("output_model.pb") # 测试推理 print(list(model.signatures.keys())) # 应输出模型签名 ``` ### 常见问题处理 1. **依赖冲突** 若报错`ImportError`,尝试使用虚拟环境或指定版本: ```bash pip install onnx==1.10.0 onnx-tf==1.9.0 tensorflow==2.6.0 ``` 2. **算子不支持** 部分ONNX算子可能未被TensorFlow实现,需手动添加自定义层或使用`onnx-tf`的补丁分支。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值