服务器的GPU使用率显示100%怎么办?

本文介绍了一种解决GPU使用率始终显示为100%的问题方法。通过分析发现,这可能是由于NVIDIA驱动中的ECCMemoryScrubbing机制导致。文章提供了具体的解决步骤,即通过执行nvidia-smi-pm1命令,将GPU驱动设置为Persistence模式,从而恢复正常GPU使用率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

当我们使用nvidia-smi 查看 GPU 状态时,显示GPU使用率100%

在这里插入图片描述

那么该如何解决呢?

分析后,可能的原因是加载 NVIDIA 驱动时,ECC Memory Scrubbing 机制造成的。

解决办法:

执行 nvidia-smi -pm 1 命令,让 GPU Driver 进入 Persistence 模式。

首先登陆我们的GPU云服务器,输入下面的命令:

nvidia-smi -pm 1

在这里插入图片描述

然后再来查看一下GPU 使用率

nvidia-smi

在这里插入图片描述

可以看到已经显示正常了。

阿里云服务器优惠活动及详细教程:syunz.com/act/aliyun
腾讯云服务器优惠活动及详细教程:syunz.com/act/qcloud

<think>好的,用户之前问过如何为不同部门的公司网络划分网段和实现高可用性,现在又转向询问GPU服务器的运维包括哪些方面。这说明用户可能是在负责公司的基础设施建设,或者正在规划IT架构,需要全面了解不同方面的运维知识。 首先,我需要明确GPU服务器运维的核心内容。用户可能想知道从硬件到软件,再到监控和优化,具体要关注哪些点。他们可能担心如何确保GPU服务器的稳定性、性能以及安全性,尤其是在高负载或长时间运行的情况下。 考虑到用户之前的网络规划问题,他们可能对高可用性、冗余设计有特别关注。所以在回答GPU服务器运维时,可能需要强调硬件冗余、散热、电源管理这些方面,因为这些直接影响服务器的可用性。同时,软件层面的驱动和固件更新、任务调度、容灾备份也是关键点。 另外,用户可能对成本优化感兴趣,比如如何合理分配GPU资源,避免浪费,或者如何监控使用情况来调整资源分配。需要提到资源监控工具和策略,比如Prometheus、Grafana等。 安全性方面,用户可能担心数据泄露或未经授权的访问,尤其是在处理敏感数据时。所以需要包括物理安全、网络安全、权限控制等内容。 用户还可能想知道具体的运维工具和最佳实践,比如使用Kubernetes进行容器编排,或者Ansible进行自动化部署。这些工具能帮助他们高效管理GPU服务器集群。 最后,应该考虑用户的实际应用场景,比如是否用于机器学习训练、推理、高性能计算等,不同场景下的运维重点可能有所不同。需要给出通用性的建议,同时提示根据具体业务调整策略。 总结下来,回答需要结构清晰,涵盖硬件、软件、监控、安全、优化等方面,并且结合用户之前的关注点,比如高可用性和网络架构,来提供全面的运维指南。</think>--- ### 一、GPU服务器运维核心目标 - **稳定性**:确保7×24小时持续运行(尤其是训练/推理任务) - **性能优化**:最大化GPU利用率(避免显存/算力闲置) - **安全保障**:防止数据泄露与算力滥用 --- ### 二、硬件运维 #### 1. **物理环境管理** - **散热要求**:GPU密集场景需强制水冷(建议机柜温度≤25℃) - **电源冗余**:双路PDU供电 + UPS(按GPU功耗预留20%余量) - 示例:NVIDIA A100单卡功耗250W,8卡服务器需至少2500W电源 - **硬件监控**:通过IPMI/iDRAC/iLO实时查看: - GPU温度(阈值设置:≤85℃报警) - 风扇转速、ECC内存错误计数 #### 2. **故障处理** - **常见故障**: - GPU显存报错(需执行`nvidia-smi --gpu-reset`) - PCIe通道降速(检查金手指氧化或接触不良) - **备件策略**:至少保留10%GPU卡、电源模块作为热备 --- ### 三、软件与驱动管理 #### 1. **基础环境** - **驱动版本**:严格匹配CUDA Toolkit版本(如NVIDIA驱动470.x对应CUDA 11.4) - **依赖隔离**:推荐使用Docker/Kubernetes部署(避免库冲突) - 基础镜像示例:`nvidia/cuda:11.8.0-base-ubuntu22.04` #### 2. **任务调度** - **资源分配**:通过Kubernetes Device Plugin或Slurm集群管理: ```bash # Slurm提交GPU任务示例 sbatch --gres=gpu:tesla_v100:2 train.sh ``` - **抢占策略**:为高优先级任务预留GPU(通过`nvidia-smi -c 3`独占模式) --- ### 四、监控与性能调优 #### 1. **监控指标** | 指标 | 工具 | 报警阈值 | |---------------------|--------------------------|---------------------| | GPU利用率 | DCGM Exporter + Prometheus | <10%持续1小时 | | 显存占用率 | nvidia-smi | >90%持续10分钟 | | PCIe带宽 | gpustat --debug | 持续降速至x8模式 | #### 2. **性能优化手段** - **计算优化**:启用TensorCore(`TF_ENABLE_CUBLAS_TENSOR_OP_MATH=1`) - **显存压缩**:使用NVIDIA A100的Memory P2P特性 - **IO瓶颈缓解**: - 共享存储:部署GPUDirect RDMA(InfiniBand网络) - 本地缓存:用NVMe SSD构建RAID0作为临时存储 --- ### 五、安全与容灾 #### 1. **访问控制** - **物理安全**:BIOS/UEFI禁用USB启动 + 机柜指纹锁 - **权限分级**: - 普通用户:仅能通过JupyterLab提交任务 - 管理员:SSH密钥登录 + 二次验证 #### 2. **数据保护** - **加密传输**:NVIDIA GPUDirect Storage(启用AES-256加密) - **容灾方案**: - 实时备份:对训练checkpoint启用S3对象存储同步 - 断点续训:通过Horovod Elastic自动恢复任务 --- ### 六、典型运维场景 #### 场景1:多用户资源争用 **解决方案**: - 部署vGPU(如NVIDIA vComputeServer) - 配置Kubernetes ResourceQuota: ```yaml resources: limits: nvidia.com/gpu: 2 ``` #### 场景2:驱动版本冲突 **处理流程**: 1. 创建驱动隔离环境:`sudo apt-mark hold cuda-drivers` 2. 使用容器化部署:`docker run --gpus all --cgroup-parent=/gpuserver nvidia/cuda:11.8.0` --- ### 七、运维工具链推荐 | 类型 | 工具 | 用途 | |------------|------------------------|-------------------------------| | 监控 | Grafana + DCGM Exporter | 可视化GPU集群状态 | | 部署 | Ansible GPU Playbook | 批量安装驱动/CUDA | | 日志 | ELK Stack | 分析NVIDIA驱动内核日志 | | 自动化测试 | NVIDIA DGXtest | 验证GPU硬件稳定性 | > **注**:对于大规模集群(≥32台GPU服务器),建议部署NVIDIA Base Command Manager实现集中运维。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值