【深度学习入门到精通系列】CGAN数据增强

条件生成对抗网络(CGAN)引入类别标签,改善了GAN的随机性,允许根据标签生成特定类别的内容。CGAN常用于数据集较小的情况,通过数据增强提高模型的性能和样本多样性,例如在浓雾天气图像识别中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

1 CGAN的简介

为了解决带标签的数据生成问题,研究者们提出了条件生成对抗网络(CGAN)的概念.
在这里插入图片描述
CGAN的结构如上图所示,与GAN的主要区别是生成器和判别器的输入数据中都加入类别标签向量(C_vector),生成器的优化目标函数基本上没有变化。

总的来说CGAN在GAN上的改动并不大,但是普通的GAN所生成的内容是随机的,CGAN实现了根据输入标签生成指定类别的内容。

2 应用

近年来,卷积神经网络应用于图像分类任务性能优越,多项研究证明卷积神经网络在大规模带有标签的数据集训练下,训练后网络能够取得高精度的识别率或分类效果。然而在某些特殊领域,例如浓雾天气形势图基准数据集,由于多方面因素制约,累积的数据集中样本远小于一般模型常规训练集规模,因此导致训练后的网络出现过拟合现象。为了降低因训练集样本数量过少对训练造成的不良影响,各种扩展数据集样本的数据增强算法被提出并被广泛应用,将数据增强算法应用于小数据集不仅能够提升数据集样本的数量也能提升样本的多样性。本文针对数据集中样本数不足的情况,提出了基于深度生成模型的数据增强算法:(1)基于高斯混合模型条件生成式对抗网络࿰

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值