线性代数的本质(一)

线性代数本质(一)

线性代数是多门学科理论研究的基础。回顾自己以前学习的线性代数较为浅显,因此打算重新复习并加深对线性代数的理解。本文为线性代数本质(一)。

向量的概念及理解

在线性代数中,最本质最基础的内容就是“向量”,因此我们先明确向量的概念:

字面意思:排成一列的数字
实际意思:有向线段(带有方向的线段)、空间内的点

嘿,就长这样!
[ 2 5 ] [ 6 3 3 ] \begin{bmatrix} 2\\ 5\\ \end{bmatrix} \begin{bmatrix} 6\\ 3\\ 3\\ \end{bmatrix} [25]633

嗯,这串数列有什么含义呢?这取决于你看他的视角。
在这里插入图片描述

那么线性代数中的向量视角是什么样的呢?

以二维平面为背景,建立x-y坐标轴,平面中的原点是所有向量的根源,向量坐标可以用一对数表示,描述了如何从原点(向量的起点)出发达到他的尖端(向量终点),因此每个向量对应一对数。
在这里插入图片描述

不仅局限于二维平面,我们可以把线性代数中向量的概念推广到三维、四维等等,以三维平面为例,每个向量就与一个有序三元数组相对应。

向量的基本运算

我们知道,线性代数中的每一个主题都围绕着两种运算————向量相加和向量数乘

  • 向量相加
    指的是相同维数的向量之间的加法,类似于高中物理中的三角形定则,其计算表达式是:
    [ x 1 x 2 x 3 ] + [ y 1 y 2 y 3 ] = = [ x 1 + y 1 x 2 + y 2 x 3 + y 3 ] \begin{bmatrix} x1\\ x2\\ x3\\ \end{bmatrix}+ \begin{bmatrix} y1\\ y2\\ y3\\ \end{bmatrix}== \begin{bmatrix} x1+y1\\ x2+y2\\ x3+y3\\ \end{bmatrix} x1x2x3+y1y2y3==x1+y1x2+y2x3+y3
    在坐标轴上,我们固定第一个向量的位置,平移第二个向量,使它的起点与第一个向量的终点重合,然后从第一个向量的起点出发,指向第二个向量的终点,生成的新向量就是他们的和。
    在这里插入图片描述

为什么呢?
在这里我们把向量看作一种在坐标轴上的特定的运动,我们从起点出发朝着它指定的方向运动一段距离,沿着这两个向量所描述的方式进行移动后,总体效果与你沿着这两个向量的和运动一样。
在这里插入图片描述

  • 向量数乘
    向量的数乘相当于对向量进行拉伸和缩放,其数学表达有以下两部分组成:
    在这里插入图片描述

标量作为伸缩程度的控制变量,解释了如何拉伸和压缩一个向量。

线性组合、空间与基

基向量

我们都知道,在二维空间里,我们可以用一对数列唯一的表示各个向量。

为什么可以这样表示呢?这些数又有什么含义?

结合我们在上一部分学习到的向量数乘的知识,我们可以把数列看作数乘时候的标量,我们只需要找一个向量,与标量进行数乘后在坐标系中唯一地表示每个向量。

很显然,“基向量”很满足我们的要求。

基向量是向量空间上,各个维度正方向上,线性无关的,长度为1的单位向量,空间的维度决定了基向量的个数。

我们以下列向量为例讲述一下基向量的作用:
向量 [ 2 2 ] \begin{bmatrix} 2\\ 2\\ \end{bmatrix} [22]可以看作标量2对x方向上的基向量 i ⃗ \vec i i 进行缩放、标量2对y方向上的基向量 j ⃗ \vec j j 进行缩放后相加所得的结果,即缩放向量并相加
在这里插入图片描述
这引发了我们对2个问题的思考:
1、坐标系中的基向量唯一吗?我可以选择不同方向的单位向量作为基向量吗?

答案是可以的,基向量并不唯一。

假设我们确定一组基向量,通过选择两个标量,分别缩放各个基向量,若缩放基向量后相加的结果可以表示所有的二维向量,这代表这组基向量是合理的。

2、为什么基向量之间要线性无关?
别急,这个问题会在后面做出解答。

线性组合

两个向量标量乘法之和的结果被称为这两个向量的线性组合,数学表达如下:
a v ⃗ + b w ⃗ a\vec v + b\vec w av +bw
通过改变标量的大小,线性表示空间中所有的向量。

张成空间

所有可以表示为给定向量线性组合的向量集合成为给定向量张成的空间。
那么这个空间究竟是什么样的呢?
在这里插入图片描述

回到前面的问题————为什么基向量之间要线性无关?

假设我们拿x轴上正方向上的单位向量 i ⃗ \vec i i 和负方向上的单位向量 l ⃗ \vec l l 为二维平面上的基向量,则线性表示成:
a i ⃗ + b l ⃗ a\vec i + b\vec l ai +bl
当我们将标量b设为0时,只改变标量a,最终形成的空间是一条直线;当我们通知改变标量a与b时,无论如何改变,最终形成的空间仍然都是一条直线;

因此,基向量 l ⃗ \vec l l 并未对空间做出任何贡献,它是多余的。这说明上述基向量的选择是不合理的。

假设你有很多向量,并且可以移除其中一个而不减小张成空间,我们称之为线性相关,另一个表述是一个向量可以表示为其他向量的线性组合,如上面选取的基向量 l ⃗ \vec l l 可以线性表示为 l ⃗ = a i ⃗ \vec l= a\vec i l =ai

另一方面,如果所有向量都给张成的空间增添了新的维度,它们就被成为线性无关,因此基是张成该空间的一个线性无关的向量集。

向量与点

当所有向量都充满在空间中时,会给人一种密集恐惧症的感觉,因此我们用向量的终点代表该向量,将每个向量抽象为它的终点,这样,二维的向量空间可以看作一张无限延张的平面。

参考资料

线性代数的本质

写在最后

以上为本人学习过程中的笔记与思考,有兴趣的小伙伴可以关注公众号"马克波罗的鸡腿"进一步交流,如果不足欢迎指正,期待共同进步。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值