文章目录
最短路径算法
最短路径算法
Bellman-Ford(单源最短)
算法核心
- 对于每一个边都看能不能去更新单源最短路径
- 在更新过程中并不确定哪一个边就是最短路径,而是始终抱着试探的心态去更新最短路径
- 一旦某一次起点到其他结点的最短路径不更新时,就表示全部为最短路径
负环的判断
Bellman-Ford算法可以判断图中是否有负环,当出现负环时是不存在最短路的,并且易知最多通过(V-1)条路就能到达任何一个点并且距离最短,因此如果在第V次的循环仍能更新最短路径表,则代表图中存在负环
算法代码
const int MAX_E=10000;
const int MAX_V=10000;
const int INF=99999;
struct edge
{
int from,to,cost;
}es[MAX_E]; //记录边的数组
int dist[MAX_V]; //最短路径表
int V,E; //顶点数和边数
//从起点s出发到其它点的最短路径,true表示有负环,false表示无负环
bool bellman_ford(int s)
{
for(int i=0;i<V;i++) dist[i]=INF;
dist[s]=0; //s->s的最短距离为0
while(true){
bool update=false;
for(int i=0;i<E;i++){
edge e=es[i];
if(dist[e.from]<dist[e.to]+e.cost){ //对每个边都看,是否能够通过这个边以更小的代价到达某个点
dist[e.from]=dist[e.to]+e.cost;
update=true;
}
}
if(!update) break; //一旦有一次不再更新,就求解出来最短路径了
}
bool fuhuan=false;
for(int i=0;i<E;i++){
edge e=es[i];
if(dist[e.from]<dist[e.to]+e.cost){ //对每个边都看,是否能够通过这个边以更小的代价到达某个点
dist[e.from]=dist[e.to]+e.cost;
fuhuan=true;
}
}
return fuhuan;
}
算法分析
算法的时间复杂度为O(|V|*|E|)
Dijkstra算法(单源)
算法核心
- 在最短路径表中每次确定一个不可改变的最短路径,以此为基准依次更新最短路径表
无法判断存在负权边的图
因为每次都确定了一个不可改变的最短路径,因此存在一定的局部片面性
例如:

最后结果的最短路径表:

实际的最短路径表:

算法代码
const int MAX_V=10000;
const int INF=99999;
int cost[MAX_V][MAX_V]; //cost[u][v]表示边e=(u,v)的权值,不存在时设置为INF
int dist[MAX_V]; //顶点s出发的最短距离
bool used[MAX_V]; //已经使用过的点
int V; //顶点数
void dijkstra(int s)
{
fill(dist,dist+V,INF);
fill(used,used+V,false);
dist[s]=0;
while(true){
int v=-1;
for(int i=0;i<V;i++){
if(!used[i]&&(v==-1||dist[i]<dist[v])) v=i;
}
if(v==-1) break;
used[v]=true;
for(int i=0;i<V;i++)
dist[i]=min(dist[i],dist[v]+cost[v][i]);
}
}
算法分析
算法的复杂度为O(|V|2)
堆优化的Dijkstra算法(单源)
算法核心
- 每次都将更新过的边的最短路径和顶点编号压入最小堆中,直到堆为空
算法代码
const int INF=99999;
const int MAX_V=100000;
struct edge
{
int to,cost;
};
typedef pair<int , int> P; //first是最短距离,second是顶点的编号
int V; //顶点数
vector<edge> G[MAX_V]; //邻接表存储
int dist[MAX_V]; //最短路径表
void dijkstra(int s)
{
//最小堆
priority_queue<P,vector<P>,greater<P>> que;
fill(dist,dist+V,INF);
dist[s]=0; //s到s的最短距离为0
que.push(P(0,s)); //将s到s的最短距离压入堆中
while(!que.empty()){
P p=que.top(); que.pop();
int v=p.second; //v为该最短路的结点
if(dist[v]<p.first) continue; //若最短路表中记录的最短路与弹出小,则证明到该结点的最短路是旧纪录
//遍历结点v的邻接表,更新相邻结点的最短路径
for(int i=0;i<G[v].size();i++){
edge e=G[v][i];
if(dist[e.to]>dist[v]+e.cost){
dist[e.to]=dist[v]+e.cost;
que.push(P(dist[e.to],e.to));
}
}
}
}
Floyd算法(多源)
算法核心
- 任意两个点的最短路径,都认为能够通过某个中间点进行中转之后达到最短路径
可判断负环
- 当某个结点到自身的距离为负数时,即存在负环
算法代码
const int MAX_V=100000;
int d[MAX_V][MAX_V]; //邻接矩阵,在最终为多源最短路径表
int V; //顶点数
void floyd()
{
for(int k=0;k<V;k++)
for(int i=0;i<V;i++)
for(int j=0;j<V;j++)
d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
}
算法分析
算法的时间复杂度为O(|V|3)
2762

被折叠的 条评论
为什么被折叠?



