传送门:POJ 2318
Problem Description
Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys away when he is finished playing with them. They gave John a rectangular box to put his toys in, but John is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for John to find his favorite toys.
John’s parents came up with the following idea. They put cardboard partitions into the box. Even if John keeps throwing his toys into the box, at least toys that get thrown into different bins stay separated. The following diagram shows a top view of an example toy box.
For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.
Input
The input file contains one or more problems. The first line of a problem consists of six integers, n m x1 y1 x2 y2. The number of cardboard partitions is n (0 < n <= 5000) and the number of toys is m (0 < m <= 5000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The following n lines contain two integers per line, Ui Li, indicating that the ends of the i-th cardboard partition is at the coordinates (Ui,y1) and (Li,y2). You may assume that the cardboard partitions do not intersect each other and that they are specified in sorted order from left to right. The next m lines contain two integers per line, Xj Yj specifying where the j-th toy has landed in the box. The order of the toy locations is random. You may assume that no toy will land exactly on a cardboard partition or outside the boundary of the box. The input is terminated by a line consisting of a single 0.
Output
The output for each problem will be one line for each separate bin in the toy box. For each bin, print its bin number, followed by a colon and one space, followed by the number of toys thrown into that bin. Bins are numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate the output of different problems by a single blank line.
Sample Input
5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0
Sample Output
0: 2
1: 1
2: 1
3: 1
4: 0
5: 1
0: 2
1: 2
2: 2
3: 2
4: 2
思路:
二分判断点与线的关系,用叉积来判断点与线的关系:
对于同顶点的两个向量p1,p2 ,如果p1 ^ p2>0,说明p1在p2的顺时针方向,
如果p1 ^ p2<0,说明p1在p2的逆时针方向
AC代码:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
const int N=5500;
const double eps=1e-8;
int sgn(double x)//判断一个数>,<,=0
{
if(fabs(x)<eps) return 0;
if(x<0) return -1;
else return 1;
}
int dcmp(double x, double y)
{
if(fabs(x - y) < eps)
return 0;
if(x > y)
return 1;
return -1;
}
struct point //点的操作
{
double x,y;
point() {
}
point(double x,double y) : x(x),y(y) {
}
void input()
{
scanf("%lf%lf",&x,&y);
}
bool operator ==(point b)const {
return sgn(x-b.x)==0&&sgn(y-b.y)==0;
}
bool operator <(point b)const {
return sgn(x-b.x)==0 ? sgn(y-b.y)<0 : x<b.x;
}
point operator -(const point &b)const {
return point(x-b.x,y-b.y);
}
point operator +(const point &b)const {
return point(x+b.x,y+b.y);
}
point operator *(const double &k)const {
return point(x*k,y*k);
}
point operator /(const double &k)const {
return point(x/k,y/k);
}
double operator ^(const point &b)const { //叉乘
return x*b.y-y*b.x;
}
double operator *(const point &b)const { //点乘
return x*b.x+y*b.y;
}
double len(){ //返回长度
return hypot(x,y);
}
double len2(){ //返回长度平方
return x*x+y*y;
}
//求单位向量
point trunc(double r){
double l=len();
if(!sgn(l)) return *this;
r/=l;
return point(x*r,y*r);
}
};
int n,m;
point zs,yx,p;
int U[N],L[N];
int sum[N];
//对于同顶点的两个向量p1,p2 ,如果p1^p2>0,说明p1在p2的顺时针方向,如果p1^p2<0,说明p1在p2的逆时针方向
bool check(int id)
{
point lin=point(U[id]-L[id],zs.y-yx.y);
point tlin=point(p.x-L[id],p.y-yx.y);
if(sgn(lin^tlin)==-1) return 1;//点在直线上方
return 0;//点在直线下方
}
int main()
{
while(scanf("%d",&n)&&n)
{
scanf("%d",&m);
memset(sum,0,sizeof(sum));
zs.input();
yx.input();
for(int i=1;i<=n;i++)
{
scanf("%d%d",&U[i],&L[i]);
}
for(int i=0;i<m;i++)
{
p.input();
int l=1,r=n;
while(l<r)
{
int mid=(l+r)/2;
if(check(mid)) l=mid+1;
else r=mid;
}
if(l==n)
{
if(check(n)) sum[n]++;
else sum[n-1]++;
}
else
{
sum[l-1]++;
}
}
for(int i=0;i<=n;i++)
{
printf("%d: %d\n",i,sum[i]);
}
printf("\n");
}
return 0;
}
本文详细解析了一种用于计算玩具落入玩具箱各分区数量的算法。通过二分判断点与线的关系,利用叉积判断点相对于线的位置,解决玩具随机抛掷到分区玩具箱中各个隔间玩具数量的问题。
3102

被折叠的 条评论
为什么被折叠?



